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Abstract

Large language models (LLMs) are increas-
ingly grounded in sensor data to perceive and
reason about human physiology and the phys-
ical world. However, accurately interpreting
heterogeneous multimodal sensor data remains
a fundamental challenge. We show that a
single monolithic LLM often fails to reason
coherently across modalities, leading to in-
complete interpretations and prior-knowledge
bias. We introduce ConSensus, a training-free
multi-agent collaboration framework that de-
composes multimodal sensing tasks into spe-
cialized, modality-aware agents. To aggregate
agent-level interpretations, we propose a hybrid
fusion mechanism that balances semantic aggre-
gation, which enables cross-modal reasoning
and contextual understanding, with statistical
consensus, which provides robustness through
agreement across modalities. While each ap-
proach has complementary failure modes, their
combination enables reliable inference under
sensor noise and missing data. We evalu-
ate ConSensus on five diverse multimodal
sensing benchmarks, demonstrating an aver-
age accuracy improvement of 7.1% over the
single-agent baseline. Furthermore, ConSensus
matches or exceeds the performance of iterative
multi-agent debate methods while achieving a
12.7x reduction in average fusion token cost
through a single-round hybrid fusion protocol,
yielding a robust and efficient solution for real-
world multimodal sensing tasks.

1 Introduction

Large language models (LLMs) are being ex-
tended beyond text to perceive and reason about
the physical world and human physiology, moti-
vated by emerging applications in embodied in-
teractions (Driess et al., 2023) and health moni-
toring (Kim et al., 2024). This requires LLMs
to be systematically grounded in sensor data that

“Work done during the author’s internship at Nokia Bell
Labs. Email: hyungjun.yoon @kaist.ac.kr.

Fahim Kawsar??

ZNokia Bell Labs

Mohammad Malekzadeh?

Lorena Qendro?

3University of Glasgow

What is the current activity?

Modality Agents Semantic Fusion
Standing + hand
motion > cooking

IMU Hybrid

Fusion Agent
Focused attention

EEG

> reading

Nearby stove
- cooking

TEMP

Stirring something

EMG - cooking

Statistical
Fusion Agent

Cooking. Multiple sensors
indicate food preparation.

Figure 1: Illustration of ConSensus. Modality-aware
agents provide specialized interpretations aggregated
via hybrid fusion for multimodal sensing.

encodes underlying motions, biosignals, and en-
vironmental measurements. Recent studies have
explored diverse grounding strategies, including
transforming raw signals into descriptive or visual
prompts (Liu et al., 2023; Yoon et al., 2024) and
jointly aligning learned sensor encoders with LLM
representations (Zhang et al., 2025). In contrast to
traditional deep learning for sensing (Radu et al.,
2018), integration with LL.Ms enables the resolu-
tion of diverse sensing tasks in an interpretable,
training-free manner by utilizing the models’ inter-
nal world knowledge.

Physical tasks are inherently multimodal, with
distinct and complementary aspects captured by
heterogeneous sensors (Radu et al., 2018). As a
result, multimodal sensing is crucial for combining
complementary information across modalities. It
becomes particularly important in real-world set-
tings where individual sensors might be unreliable
or missing. However, this necessity introduces the
challenge of sensor fusion: how to systematically
integrate heterogeneous modalities into a coher-
ent decision process. Despite growing interest in
multimodal LLMs, it remains unclear how LLMs
should reason over sensor-specific representations
and aggregate their semantic interpretations.
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Figure 2: ConSensus (top-left) achieves higher accuracy
(y-axis) at lower cost (x-axis) compared to baselines.

To address the challenge, we leverage multi-
agent collaboration as a mechanism for decompos-
ing multimodal reasoning. Recent studies have as-
signed specialized roles to multiple LLM instances
to generate diverse reasoning paths for solving com-
plex tasks (Li et al., 2023). However, existing multi-
agent frameworks primarily focus on diversifying
textual reasoning, and do not address the unique
challenges introduced by heterogeneous sensors
with asymmetric reliability. In this work, we pro-
pose a multi-agent framework for multimodal sens-
ing that explicitly encourages modality-specific
agents to produce distinct reasoning trajectories
and integrates their semantic interpretations via a
structured collaboration protocol.

Our design is guided by three empirically
grounded observations. First, we observe that a sin-
gle LLM struggles to jointly ground its reasoning
across all modalities, often producing incomplete
interpretations when faced with heterogeneous sen-
sor inputs. This limitation motivates partitioning
agents by modality, thereby encouraging indepen-
dent and complementary reasoning paths. Sec-
ond, during modality fusion, LLM-based semantic
aggregation exhibits pronounced prior-knowledge
bias, in which errors from particular modalities
are disproportionately amplified and propagated
to the final decision. Third, although statistical
aggregation mechanisms such as majority voting
can mitigate semantic bias, they break down in re-
alistic sensing settings, where missing or unreliable
sensor inputs can distort voting outcomes. Taken
together, these observations expose a fundamental
trade-off between semantic and statistical fusion,
motivating a collaboration protocol that balances
their complementary strengths and failure modes.

Based on these insights, we present ConSensus,
a training-free multi-agent framework for multi-
modal sensing. We define modality agents as LLM
instances that operate under modality-specific roles
and generate independent semantic interpretations

of the same task. To aggregate these interpreta-
tions into a final decision, we propose a principled
hybrid fusion strategy. A semantic fusion agent per-
forms reasoning-level aggregation to integrate the
semantic outputs of modality agents and produce
an initial prediction, while a statistical fusion agent
anchors its decision to a majority-voted outcome
across modality agents, providing complementary
perspective against prior-driven semantic bias. A
final hybrid fusion agent is instructed to jointly
observe the semantic and statistical fusion outputs
to produce the final prediction as a coordinator role.

We evaluate ConSensus across five diverse mul-
timodal sensing tasks, covering a broad range of
heterogeneous sensor modalities. Experimental
results demonstrate that ConSensus consistently
achieves a 7.1% accuracy improvement over the
single-agent baseline. Ablation studies further
show that the proposed hybrid fusion mechanism
effectively navigates the trade-off between seman-
tic and statistical fusion, adaptively favoring the
more reliable reasoning path under varying sen-
sor conditions. Compared to state-of-the-art multi-
agent debate baselines applied to the same modality
agents, ConSensus matches or outperforms accu-
racy while reducing average fusion token cost by
12.7x (Figure 2). This efficiency directly follows
from our architectural design: while existing multi-
agent frameworks depend on costly iterative de-
bates to refine predictions, ConSensus employs a
single-round, structured fusion protocol, achiev-
ing substantially lower inference overhead without
sacrificing accuracy.

Our primary contributions are as follows:

* We propose ConSensus, the first multi-agent
framework for multimodal sensing that decom-
poses heterogeneous sensor inputs into special-
ized, modality-aware agents. ConSensus oper-
ates without additional training, enabling direct
deployment across diverse tasks.

* We present a hybrid fusion strategy that balances
the trade-off between semantic aggregation and
statistical consensus under sensor uncertainty.

* We evaluate ConSensus across five diverse multi-
modal sensing tasks, demonstrating an accuracy
gain of 7.1% over the single-agent baseline.

* We show that our single-round fusion protocol
matches or outperforms state-of-the-art multi-
agent debate methods while achieving a 12.7 x
reduction in fusion token cost, substantially im-
proving inference efficiency and scalability.



Ground truth: amusement

User: Given the following sensor features,
predict the emotional state from [baseline,
stress, amusement].

Accelerometer: {ACC features}

ECG: {ECG features}

EMG: {EMG features}

EDA: {EDA features}

Temperature: {TEMP features}

Respiration: {RESP features} ...

Assistant: The heart-rate is elevated

(=75 bpm) compared to baseline. EDA
dynamic range (0.12) less than amusement.
Respiratory stretch is markedly increased
(=18 s), indicating stress-hyperventilation.
Overall, the pattern aligns best with stress.

(a) Single-agent inference.

Ground truth: amusement

(after observing {ECG features})

ECG agent: Features show a very low
high-frequency (HF) HRV component
(3.02e-03) and a very high low-frequency to
HF ratio (15.22), indicating stress.

ACC agent: ... is
amusement.

EMG agent: ... is
amusement.

EDA agent: ... is
amusement.

TEMP agent: ... is
amusement.

Judge agent: The most important modality
is ECG. With its very low HF HRV
component, the answer is stress.

(b) Modality agents with a judge agent.

Ground truth: amusement (missing)

ACC agent: ... is
baseline.

ECG agent: ... is
stress.

EMG agent: ... is
stress.

EDA agent: ... is
amusement.

TEMP agent: ... is
amusement.

RESP agent: ... is
stress.

- Majority Voting: stress

Judge agent: The ECG and respiration
features appear unreliable. In contrast, the
EDA modality provides robust evidence, and
the temperature features show consistent
indicators. Based on these signals, the
predicted emotional state is amusement.

(c) Data with 30% missing modalities.

Figure 3: Examples of LLM-based multimodal sensing on WESAD (Schmidt et al., 2018) using gpt-oss-20B.

2 Background and Motivation

2.1 Problem Formulation

We address the multimodal sensing task, in which
LLMs are leveraged as training-free reasoning en-
gines across diverse tasks to produce semantically
interpretable outputs. A multimodal sensing task
requires integrating heterogeneous sensor modali-
ties to produce a single, coherent inference.

Formally, given N modalities with inputs M =
{mi,ma,...,my} and a task description 7, the
objective is to predict an output y € ) that solves
the task by jointly reasoning over all available
modalities. In this work, each modality input m;
is represented using standard, hand-crafted sensor
features (e.g., summary statistics such as mean and
std), while noting that our formulation is agnos-
tic to the specific input representation and can be
readily extended to alternative forms such as raw
signals, images, or learned embeddings (Liu et al.,
2023; Yoon et al., 2024; Zhang et al., 2025).

2.2 Motivating Examples

A straightforward instantiation is to present all
modality features (M) jointly to a single LLM
agent together with the task description 7. Fig-
ure 3a illustrates an affective state inference task
posed to a single agent using multiple sensor modal-
ities (Schmidt et al., 2018). While the agent gen-
erates plausible interpretations for some modal-
ities, evidence from other sensors is frequently
overlooked, resulting in an incomplete reasoning
process and, ultimately, an incorrect prediction. We
attribute this failure to context overload and modal-
ity dominance within a single agent, where subtle
but critical modality-specific evidence is overrid-

den by salient prominent signals.

Observation 1: A single agent often produces
an incomplete cross-modal interpretation in
multimodal sensing tasks.

To ensure completeness, we decompose mul-
timodal interpretation into modality agents, each
of which follows an independent reasoning path
conditioned on a specific sensor modality (m;).
This decomposition produces multiple semantic
interpretations for the same task, which must subse-
quently be aggregated into a single decision. Com-
mon aggregation strategies include (i) employing
an additional judge agent (Liang et al., 2024) to
synthesize a final decision from all agent outputs,
or (ii) applying majority voting (Du et al., 2024)
over individual predictions.

However, we find that the judge agent often re-
lies on prior domain knowledge to disproportion-
ately weight certain modalities (e.g., privileging
clinically salient signals such as ECG), leading
to incorrect decisions when those modalities are
unreliable (Figure 3b). In real-world deployments,
sensor signals often deviate from canonical patterns
due to device-specific characteristics or environ-
mental noise. While complementary modalities
with consistent evidence can mitigate such noise,
the LLM’s knowledge bias frequently causes error
propagation; incorrect assumptions associated with
a perceived “important” modality override correct
evidence from other modalities.

Observation 2: An LLM-based judge is prone
to knowledge bias, whereby prior domain
knowledge can mislead consensus even when
robust evidence exists in other modalities.
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Figure 4: Overview of ConSensus: (i) Modality agents generate specialized per-sensor interpretations; (ii) a semantic
fusion agent aggregates cross-modal reasoning; (iii) a statistical fusion agent provides an output that anchors the
reasoning to the majority; and (iv) a hybrid fusion agent reconciles both outputs to yield the final decision.

A natural approach to mitigating knowledge
bias is majority voting, which relies on statisti-
cal aggregation rather than semantic reasoning or
prior knowledge. According to Condorcet’s Jury
Theorem (CJT) (Condorcet, 1785), if each agent
maintains a reliability > 0.5, the collective accu-
racy provably converges to 100% as the number of
agents increases. This suggests that, in theory, a
sufficient number of reliable modalities can yield
high accuracy through simple majority voting.

Conversely, when modalities are missing, cor-
rupted, or systematically degraded (i.e., sensor fail-
ure), a common scenario in real-world sensing (Du
et al., 2020), majority voting can fail catastrophi-
cally. Figure 3c illustrates such a failure case under
30% missing modalities. In these settings, sensor
failures violate the core assumption of CJT (i.e.,
voter reliability < 0.5), causing statistical aggre-
gation to converge toward an incorrect consensus.
In contrast, the judge agent identifies uncertainty
cues to discount unreliable reasoning and prioritize
complementary modalities that provide consistent
rationales.

Observation 3: Majority voting is prone to
sensor failure, often producing unreliable votes
and false consensus in multimodal sensing.

Together, observations 1-3 reveal complemen-
tary failure modes in multimodal reasoning: single-
agent reasoning suffers from incomplete cross-
modal interpretation (Observation 1), semantic ag-
gregation is vulnerable to knowledge bias (Obser-
vation 2), and statistical aggregation is fragile un-
der sensor failure (Observation 3). These observa-
tions jointly expose a fundamental tension between
semantic-level and statistical aggregation.

3 Method

We introduce ConSensus, a training-free
Conversational Sensor Fusion framework that
performs multimodal sensing via structured, role-
specialized multi-agent collaboration (Figure 4).
ConSensus comprises four defined agent roles:
(i) modality agents, each specialized to a single
sensor modality and responsible for producing
task-relevant semantic interpretations; (ii) a se-
mantic fusion agent that integrates modality-agent
outputs into a holistic prediction by reasoning
over cross-modal semantic evidence; (iil) a sta-
tistical fusion agent that reasons over a fixed
prediction anchored to a majority-vote consensus
of modality-level predictions, providing robustness
against prior-driven knowledge bias; and (iv) a
hybrid fusion agent that arbitrates between the
outputs of the semantic and statistical fusion agents.
By explicitly balancing knowledge-grounded and
consensus-grounded reasonings, the hybrid fusion
agent produces the final prediction.

3.1 Modality Agents

ConSensus instantiates a set of modality agents
{Amod | gmod " Amod} " where each agent A
is assigned to a single sensor modality m; and is
responsible for producing a task-relevant semantic
interpretation of that modality under the query 7.
Each agent receives a modality-conditioned prompt
(m;, T) and outputs (i) a modality-specific predic-
tion ¢; € Y and (ii) a rationale r; that explicitly
grounds the prediction in evidence. This modular-
ization isolates modality-level reasoning, reducing
cross-modal interference within the prompt and
preserving complementary evidence that may oth-
erwise be diluted under joint prompting.



3.2 Fusion Agents

To reach a final prediction, ConSensus aggregates
the outputs of the modality agents, {(g;,7:)}Y,.
As discussed in Section 2, semantic and statisti-
cal aggregation paradigms exhibit complementary
strengths and distinct failure modes. To balance
these trade-offs, we define a hybrid fusion approach
comprising three fusion agents.
Semantic Fusion Agent (Af). Tt implements
a knowledge-grounded aggregation that synthe-
sizes semantic evidence across modality-agent
outputs {(91,71), ..., (Jn,rn)} using the LLM’s
prior knowledge. It represents a semantic induc-
tive bias that emphasizes cross-modal coherence,
causal plausibility, and high-level domain knowl-
edge when forming an aggregated hypothesis.
Statistical Fusion Agent (A%S¢). It implements
a consensus-grounded aggregation by anchoring
its reasoning to a fixed majority-voted prediction
Uvote = arg MaXccy ZZJ\L 1 1[g; = ¢|. Rather than
generating a new prediction, it produces a rationale
that justifies this statistical consensus, representing
a complementary inductive bias that prioritizes ro-
bustness to individual agent errors and suppresses
prior-driven knowledge bias.
Hybrid Fusion Agent (Afl‘;slf). We formal-
ize hybrid fusion as an instance-wise arbitra-
tion between two complementary inductive bi-
ases: (Jrem rsem) = AL({(i,r0)}Y,) and
(Gstats Tstat) = Al ({(94,7) }/L1)- The hybrid fu-
sion agent Alfluystf performs instance-wise arbitration:
(?), T) = Afll;,s[f((:’:/sema Tsem)a (@stat» Tstat)) which se-
lects between two complementary aggregation hy-
potheses grounded in (i) semantic reasoning and
(ii) statistical consensus as a coordinator role.
Unlike prior methods that rely only on
knowledge-grounded reasoning, the hybrid fu-
sion agent is additionally exposed to statistically
grounded reasoning. This design introduces a com-
plementary, data-driven perspective into the de-
cision process, allowing ConSensus to maintain
robustness under sensor failure via semantic coher-
ence, while simultaneously mitigating knowledge
bias by taking account of statistical stability. Full
prompt templates are provided in Appendix C.

4 Experiments

4.1 Setup

Datasets. We evaluate ConSensus across five di-
verse multimodal sensing benchmarks, spanning

both physiological and physical activity recogni-
tion tasks: (i) WESAD (Schmidt et al., 2018) for
affective state recognition; (ii) SleepEDF (Kemp
et al., 2000) for sleep stage classification; (iii) Ac-
tionSense (DelPreto et al., 2022) for recognizing
four categories of kitchen activities (e.g., peeling,
washing); (iv) MMFit (Strombéck et al., 2020) for
gym exercise recognition; and (v) PAMAP2 (Reiss
and Stricker, 2012) for daily activity recognition.
The datasets cover a wide range of 12 distinct sen-
sor modalities collected from different locations
and devices. Raw sensor data were processed into
standard, hand-crafted feature representations fol-
lowing established protocols (Schmidt et al., 2018;
Xu et al., 2025). We detail the sensor modalities,
preprocessing, and splits in Appendix A.
Prompts. We employ text-only prompts that em-
bed extracted sensor features within a structured
prompt template. Each prompt includes a detailed
description of the target task and data, derived di-
rectly from the original dataset documentation. Fur-
thermore, we employ a 1-shot in-context learning
strategy, providing one representative example per
class to enhance the model reasoning. We provide
the prompt details in Appendix C.

Models. We use gpt-o0ss-20B as the main back-
bone (OpenAl et al., 2025). Moreover, we eval-
uate scale and architecture variations using gpt-
0ss-120B, Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) and L1ama-4-Scout-17B-16E (Meta
Al 2025). We use a temperature of O to ensure
deterministic and reproducible outputs.
Baselines. We evaluate ConSensus against three
representative baselines: (i) Single-Agent, where
all modality features are concatenated into a single
prompt, (ii) Self-Consistency (SC) (Wang et al.,
2023), which samples multiple reasoning paths
and selects the most consistent prediction (with
temp= 0.7), and (iii) Self-Refine (SR) (Madaan
et al., 2023), which iteratively generates feedback
and refine an initial response. For SC, we use three
LLM instances, and for SR, we perform two refine-
ment steps to ensure a comparable inference budget
with ConSensus, which involves two intermediate
fusion steps prior to the final hybrid decision.

To further evaluate the effectiveness of our hy-
brid fusion design, we compare ConSensus against
state-of-the-art multi-agent debate frameworks
adapted to operate over the same set of modal-
ity agents: (i) Debate (Du et al., 2024), where
agents iteratively refine responses by observing
the outputs of other agents, with the final decision



Method WESAD SleepEDF  ActionSense MMFit PAMAP2 Avg.
Single-agent baselines

Single-Agent 0.793 +0.033  0.519 +0.031 0.577 £0.032 0.819 £0.022 0.551 +£0.027 0.652 +0.027
+ Self-Consistency  0.786 +0.035 0.541 £0.031 0.555 +0.031 0.862 +£0.019 0.547 £0.027 0.658 +0.027
+ Self-Refine 0.747 £0.035 0.551 +£0.031 0.566 +£0.031 0.822 +£0.022 0.563 £0.026 0.650 +0.026

Modality agents + multi-agent debate baselines, requiring 76K additional tokens per sample

+ Debate 0.873 £0.027 0.548 £0.032 0.609 +£0.031 0.984 +0.007 0.561 £0.028 0.715 +0.028
+ MAD 0.847 £0.029 0.562 £0.031 0.613 +£0.031 0.960 +0.011 0.589 +0.026 0.714 +0.026
+ CMD 0.840 £0.030 0.578 £0.031  0.589 £0.034 0.962 +0.011 0.539 £0.025 0.702 + 0.025
+ ReConcile 0.880 +£0.027 0.571 £0.030 0.640 +0.031 0.964 +0.011 0.579 +£0.026 0.727 +0.026
Modality agents + fusion agents (ours), requiring 6K additional tokens per sample

+ Semantic Fusion 0.825 £0.031 0.580 +£0.031 0.605 £0.033 0.964 +0.011 0.559 £0.026 0.707 +0.026
+ Statistical Fusion ~ 0.927 +£0.021 0.592 +0.032 0.597 £0.033 0.960 +0.011 0.534 £0.026 0.722 +0.026
ConSensus 0.880 +0.029 0.600 +0.031 0.611 £0.031 0.967 +0.010 0.558 £0.026 0.723 +0.026

Table 1: Comparison of ConSensus with baseline methods. Ablation results for the individual semantic and
statistical fusion agents are reported for comparison. The best and second-best accuracies are bold and underline.

determined by majority voting; (ii) MAD (Liang
et al., 2024), which follows a similar protocol to
Debate but employs an judge agent to steer the final
decision; (iii) CMD (Wang et al., 2024), where
agents are partitioned into groups (we use two
groups) such that agents within each group share
full responses, while only prediction counts are ex-
changed across groups; and (iv) ReConcile (Chen
et al., 2024), where agents output an explicit con-
fidence score and arrive at a final decision via
confidence-weighted voting. As SC and SR, we fix
the number of debate rounds to two. We emphasize
that, while these baselines are designed for multi-
round debates, ConSensus performs aggregation in
a single round, highlighting a fundamental differ-
ence in both efficiency and interaction structure.
Importantly, ConSensus is a training-free frame-
work. By leveraging the world knowledge and
reasoning capabilities of pre-trained LLMs, our
method bypasses the need for large-scale data col-
lection and task-specific model training. Conse-
quently, we do not include traditional learning-
based sensor fusion methods (Radu et al., 2018)
as baselines, since they rely on supervised training
over substantial task-specific data and are therefore
not directly comparable to a training-free setting.

4.2 Results

Effect of Modality Agents. We first evaluate the
impact of modality agents by comparing ConSen-
sus against single-agent reasoning baselines. As
shown in Table 1, ConSensus consistently outper-
forms the Single-Agent baseline by an average ac-
curacy margin of 7.1%. Notably, even without hy-
brid fusion, both semantic-only and statistical-only
fusion variants achieve substantial performance

gains, indicating that modality-specific agent de-
composition alone yields strong improvements.
While Self-Consistency yields only marginal im-
provements (an average gain of 0.6%), its perfor-
mance remains substantially below that of ConSen-
sus. Qualitative analysis (Appendix D) shows that
the Single-Agent baseline often omits modality-
specific interpretations, consistent with Observa-
tion 1. In contrast, ConSensus ensures complete
modality coverage, resulting in more reliable and
well-grounded decisions.

Effect of Hybrid Fusion. Table 1 further compares
ConSensus with semantic-only and statistical-only
fusion variants. While statistical fusion outper-
forms semantic fusion by an average margin of
1.5%, the optimal fusion strategy varies substan-
tially across datasets. Semantic fusion performs
best when sensor data align well with LLM prior
knowledge (e.g., PAMAP2, 2.5%), whereas statis-
tical fusion dominates under unexpected or noisy
data characteristics (e.g., WESAD, 10.2%). This
1s consistent with Observation 2: in WESAD, the
semantic fusion agent frequently overweights in-
correct ECG-derived predictions due to knowledge
bias, whereas majority voting aggregates correct
evidence from secondary modalities.

Importantly, the hybrid fusion agent resolves this
trade-off, achieving the highest average accuracy
across datasets. On SleepEDF, ActionSense, and
MMFit, the hybrid agent surpasses both semantic-
only and statistical-only fusion agents. This demon-
strates the hybrid agent’s ability to follow seman-
tic reasoning when it is reliable and to revert to
statistical consensus when knowledge bias would
otherwise lead to incorrect decisions.

Comparison with Multi-Agent Debate. We fur-
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Figure 5: Average input tokens per inference across
datasets. Gray bars denote tokens required for initial
interpretation, and blue bars denote aggregation or re-
finement tokens, segmented by rounds.

ther compare ConSensus with iterative multi-agent
debate baselines built on the same set of modal-
ity agents. ConSensus achieves the highest accu-
racy among all baselines, with the exception of
ReConcile, which attains comparable performance
(72.7% vs. 72.3%). Notably, all debate baselines
rely on multi-round interactions, incurring sub-
stantial token overhead. In contrast, ConSensus
achieves comparable or superior accuracy using
a single-round fusion protocol, resulting in up to
12.7x reduction in fusion tokens compared to the
debate baselines. We further evaluate non-iterative
variants of the debate baselines in Appendix B,
showing that ConSensus consistently outperforms
debate baselines under similar number of tokens.

Token Efficiency. Figure 5 reports the average
token usage per inference across all datasets. Gray
bars represent tokens consumed during initial in-
terpretation, including system prompts and sensor
feature descriptions required to derive an initial
prediction. These costs remain consistent across
all methods, as modality agents partition the same
underlying sensory information rather than intro-
ducing additional content. Blue bars represent to-
kens consumed by refinement, debate, or fusion
procedures. While ReConcile, one of the strongest
baselines, requires 78.6K tokens for aggregation
per inference to achieve accuracy comparable to
ConSensus, ConSensus requires only 6K tokens.
Averaged across all multi-agent debate baselines,
ConSensus reduces aggregation tokens by 12.7x.
This result highlights the substantial token effi-
ciency of ConSensus, achieved through its single-
round structured fusion design.

Robustness to Sensor Failure. We simulate sen-

sor failure by randomly omitting 10%, 30%, and
50% of sensor modalities. As shown in Figure 6,

o
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—#— Semantic Fusion
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0 10 30 50
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Figure 6: Accuracy under random modality omission
at varying missingness levels. ConSensus maintains
higher accuracy by adaptively balancing semantic and
statistical fusion.

ConSensus maintains a consistent performance ad-
vantage, outperforming the Single-Agent baseline
by an average of 7.1%, 4.5%, 8.2%, 1.2% across
the respective missingness ratios.

We observe that the statistical fusion degrades

sharply as sensor missingness increases, collapsing
to 41.4% at 50% missingness. This confirms Obser-
vation 3: majority voting is fragile when anchored
to a high ratio of unreliable votes. In contrast, se-
mantic fusion exhibits remarkable resilience, main-
taining 59.9% accuracy even in extreme failure
scenarios. Importantly, ConSensus’s hybrid fusion
dynamically prioritizes the semantic reasoning as
statistical certainty drops. Consequently, ConSen-
sus outperforms the statistical fusion by 9.1% at
30% and 18.4% at 50% missingness, effectively
mitigating catastrophic degradation by selectively
following the semantic fusion agent.
Effect of LLM. We evaluate ConSensus across
diverse open-sourced LLMs, including gpt-oss-
120B, L1lama-3.1-8B-Instruct, and the Mixture-
of-Experts (MoE) based Llama-4-Scout-17B-
16E (109B total parameters). Table 2 compares
ConSensus against the Single-Agent baseline, the
best-performing debate baseline ReConcile, and
the semantic and statistical fusion agents.

Across all LLMs, ConSensus consistently out-
performs the Single-Agent baseline and exhibits
robust hybrid fusion behavior, effectively balancing
semantic and statistical fusion results. For gpt-
0ss-120B, semantic and statistical fusion achieve
comparable performance, and ReConcile outper-
forms ConSensus, suggesting that the prior knowl-
edge in larger parameters benefit the fusion and
further debates. In contrast, on Llama models,
ConSensus consistently outperforms ReConcile
while requiring fewer tokens (up to 13.1x), indi-
cating that ReConcile’s advantages are not robust
across LLLMs. Notably, on the small Llama-3.1-



WE- Sleep Action MM-  PA-

Method SAD EDF Semse Fit MAP2 AVE
@ gpt-0ss-120B

Single agent

Single-Agent 0.807 0.580 0.564 0.730 0.592 0.654
Modality agents

+ ReConcile 0.887 0.588 0.604 0.980 0.636 0.739
+ Semantic Fusion 0.793 0.572 0.600 0.967 0.633 0.713
+ Statistical Fusion 0.880 0.580 0.572 0.960 0.572 0.713
ConSensus 0.833 0.572 0.584 0.967 0.611 0.713

0Q Llama-3.1-8B-Instruct
Single agent

Single-Agent 0.493 0292 0.288 0.167 0.225 0.293
Modality agents

+ ReConcile 0.673 0304 0296 0.390 0.231 0.379
+ Semantic Fusion 0.773 0.368 0.288 0.493 0.344 0.453
+ Statistical Fusion 0.787 0.416 0.324 0.543 0.342 0.482
ConSensus 0.780 0.368 0.296 0.487 0.347 0.456
0Q Llama-4-Scout-17B-16E

Single agent

Single-Agent 0.660 0.416 0.268 0.293 0.386 0.405
Modality agents

+ ReConcile 0.853 0.556 0.572 0.877 0.497 0.671
+ Semantic Fusion 0.833 0.536 0.588 0.900 0.525 0.676
+ Statistical Fusion 0.860 0.568 0.604 0.910 0.531 0.695
ConSensus 0.860 0.548 0.592 0.903 0.542 0.689

Table 2: Performance comparison of Single-Agent base-
line, ReConcile, Semantic Fusion, Statistical Fusion,
and ConSensus across four LLM backbones.

8B-Instruct model, the Single-Agent baseline
performs poorly (29.3%), and ReConcile yields
limited improvement (+8.6%), whereas ConSensus
achieves a substantially larger gain (+16.3%). This
highlights the strong potential of ConSensus to en-
hance multimodal sensing capabilities for smaller,
resource-constrained LLMs. Overall, ConSensus
delivers consistent performance gains across model
families while maintaining high token efficiency.

5 Related Work
5.1 LLM-based Sensing

Grounding LLMs with sensor data enables a broad
spectrum of sensing tasks by leveraging world
knowledge and semantic reasoning to interpret rich
real-world contexts. Early works (Xu et al., 2024;
Liu et al., 2023) demonstrated that LLLMs can in-
terpret raw or processed sensor data to solve real-
world sensing problems. Subsequent studies have
explored broader reasoning capabilities over sensor
inputs (Ouyang and Srivastava, 2024) , conversa-
tional analysis over long-term sensor traces (Yu
et al., 2025). To improve sensor understanding, re-
cent works proposed transforming sensor data into
visual representations (Yoon et al., 2024), align-
ing LLMs with modality-specific encoders (Imran
et al., 2025), or pre-training large-scale sensor lan-
guage models (Zhang et al., 2025; Langer et al.,
2025; Chan et al., 2024). Additionally, agentic
approaches have been proposed to decompose com-

plex sensor analysis into modular actions or work-
flows (Shen et al., 2025; Heydari et al., 2025).
However, most existing studies focus on single
or a small number of sensor modalities and do not
explicitly address the challenges of heterogeneous
sensors. In this work, we investigate multimodal
sensing with LLMs, identifying fundamental chal-
lenges related to dense inputs and the absence of
effective semantic-level fusion mechanisms, and
propose a solution to address these limitations.

5.2 Multi-Agent Collaboration

Multi-agent collaboration enables complex task
execution by assigning specialized roles and co-
ordinating interactions among multiple agents (Li
et al., 2023; Hong et al., 2024). Prior work has
demonstrated the effectiveness of multi-agent col-
laboration in coding (Qian et al., 2024), scien-
tific research (Lu et al., 2024), and tool use (Wu
et al., 2024). Recent works employ multi-agent
debate mechanisms to improve reasoning accuracy
by leveraging iterative deliberation to converge on
more robust solutions (Du et al., 2024; Liang et al.,
2024; Chen et al., 2024; Wang et al., 2024). Nev-
ertheless, most existing frameworks are designed
for text-centric benchmarks and task domains such
as writing and coding, rather than sensor-driven or
multimodal settings. In this work, we extend the
scope of multi-agent collaboration to multimodal
sensing by introducing a role-specialized frame-
work tailored to heterogeneous sensor inputs.

6 Conclusion

We propose a multi-agent collaboration framework
for multimodal sensing that decomposes sensing
tasks into modality-aware agents, enabling indepen-
dent interpretation of heterogeneous sensor streams.
Our hybrid fusion mechanism navigates the trade-
off between semantic aggregation and statistical
consensus of the modality-specific outputs. While
semantic reasoning remains robust under sensor
failures, the statistical anchor mitigates the knowl-
edge bias often observed in LLM-based judges
that over-prioritize specific modalities. Evaluations
across five diverse sensing benchmarks confirm that
ConSensus outperforms the single-agent baseline
by an average of 7.1% in accuracy. Furthermore, by
employing a single-round hybrid fusion protocol,
ConSensus achieves a 12.7x reduction in fusion
token costs while matching the performance of
state-of-the-art multi-agent debate methods.



Limitations

The scale of our experiments was constrained by
the computational costs associated with multimodal
sensing and multi-agent collaboration. In particular,
processing heterogeneous sensor features through
role-specified multi-agent collaboration incurs non-
trivial inference overhead. To prioritize breadth
of evaluation across diverse tasks, modalities, and
baselines, we therefore conducted experiments on
feasible subsets of each dataset rather than the full
dataset. Future work should investigate the scal-
ability of this framework to larger datasets and
long-term sensing populations, as well as strategies
for reducing inference overhead without sacrificing
robustness.

This work is currently limited to classification
tasks, as there is no established benchmark for
evaluating LL.M-based multimodal sensing across
broader task types. We thus curated an evalu-
ation suite by selecting datasets with objective
ground-truth labels enable rigorous and repro-
ducible accuracy-based evaluation. As a result, our
evaluation does not cover human-centric reasoning
or subjective judgment tasks. Extending the frame-
work to such domains would require specialized
data collection protocols and human annotations
to assess the quality, coherence, and usefulness of
generated reasoning.

This work focuses primarily on establishing
modality-specific agents and the hybrid fusion
protocol.  As a result, we did not incorpo-
rate advanced prompting strategies, such as Self-
Consistency (SC) or iterative Self-Refinement (SR),
applied on top of ConSensus. Similarly, while
multi-agent collaboration protocols such as ReC-
oncile could potentially improve performance by
integrating confidence signals into the semantic fu-
sion process, we prioritized isolating and validating
the effectiveness of the core protocol without in-
troducing additional components. These advanced
combinations represent promising future directions
for enhancing the reasoning capabilities of both
modality agents and fusion agents.

We utilized non-fine-tuned LLMs to demonstrate
the generalizability of our framework. We ex-
pect that further specialization, such as fine-tuning
agents on modality-specific data or integrating
Retrieval-Augmented Generation (RAG) would fur-
ther improve performance. By demonstrating that
role specialization and structured data instructions
alone yield significant gains, we establish a foun-

dational step toward more complex multimodal
systems. As sensor-specialized LLMs continue to
emerge, ConSensus can serve as a guideline pro-
tocol for designing effective collaboration among
heterogeneous, modality-aware agents.

Ethical Considerations

Potential Risks. ConSensus is a general multi-
modal sensing framework that can be applied to
domains including health-related tasks. In high-
stakes applications such as clinical decision support
or mental health assessment, incorrect predictions
or misleading model-generated reasoning may lead
to inappropriate user actions. As LLMs may pro-
duce hallucinated or poorly calibrated interpreta-
tions, deploying such systems without adequate
safeguards and human oversight may introduce
safety risks. We emphasize that ConSensus is in-
tended for research and exploratory use only. Any
real-world deployment in safety-critical contexts
should incorporate rigorous validation, regulatory
compliance, and human-in-the-loop supervision.
Further research is required to establish reliability
guarantees, calibration mechanisms, and domain-
specific safeguards before applying such systems
to precision-sensitive applications.

Use of LLMs. We used ChatGPT and Gemini
solely for language polishing of the manuscript.
After the core implementation of our software, the
Cursor Al assistant was used only for code format-
ting and cleanup.
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Dataset Task #Classes  Sensor modalities

. . (ACC) ECG) EMG | EDA [ TEMP | RESP )(( Chest ))
WESAD Affective state recognition 3 (ACC) PPG ) EDA | TEMP)( Wrist))
SleepEDF Sleep stage classification 5 (EEG)( Fpz-Cz )) (EEG)( Pz-0z ))
ActionSense  Kitchen activity recognition 5 (ACC) ANG) EMG)( Left arm )), (ACC) ANG ) EMG (| Right arm |)

. . .. ACC | GYR | X (| Ear | Left wrist | Right wrist | Waist
MMFit Gym exercise recognition 10 ((Ear Left wrist ] Right wrist | Waist )
(MAG )((Waist ) (HR)x (Left wrist | Right wrist |)

PAMAP2 Daily activity recognition 12 X ((Hand | Chest | Ankle ))

Table 3: Summary of multimodal sensing datasets and their respective sensor modalities.

Sensor Extracted features

Mean, std, and absolute integral for each axis (x, y, z) and magnitude. Peak frequency per axis.
T
Heart rate (HR): Mean and std of HR derived from inter-beat intervals.
(Eca) Pra) HR variability (HRV): RMSSD, pNN50, TINN, and std.
Frequency domain: Power in ULF (0.01-0.04 Hz), LF (0.04-0.15 Hz), HF (0.15-0.4 Hz), and UHF (0.4-1.0
Hz). Total power, LF/HF ratio, relative powers, and normalized LF/HF components.
Mean, std, min, max, slope, and dynamic range (5 Hz low-pass filtered).
EDA Tonic (SCL): Mean, std, and correlation with time.

Phasic (SCR): Mean, std, event count, sum of magnitudes, total duration, and area under curve (AUC).
Chain 1 (high-pass): Mean, std, dynamic range, absolute integral, median, 10th/90th percentiles. Mean/me-

(EmMG) dian/peak frequency and spectral energy across seven bands (0-350 Hz).
Chain 2 (50 Hz low-pass): Peak count, mean/std/sum of peak amplitudes, and normalized sum of amplitudes.

Inhalation/exhalation durations (mean, std, ratio), stretch, inspiration volume, respiration rate, and average
cycle duration (0.1-0.35 Hz bandpass).

Mean, std, min, max, slope, and dynamic range.
Frequency bands: Delta, theta, alpha, beta, spindle, K-complex, and sawtooth.

@ Band features: Mean, std, variance, dynamic range, peak count, zero-crossing rate, variance of first-order
difference, and absolute power (Welch’s method).
Ratios: Delta/theta, theta/alpha, alpha/beta, and (delta+theta)/(alpha+beta).
Time Domain: Mean, std, variance, dynamic range, zero-crossings, and first-order difference variance.

Eye movements: Large movement count (> 120V within 1.5s) and difference variance (clean signal).

Spectral: Slow (0.5-2 Hz) and rapid (2-5 Hz) power ratios relative to total power (0.5-30 Hz).

Table 4: Summary of features extracted for different sensor types.

A Dataset Details

Overview. Table 3 summarizes the tasks and sensor
modalities for each dataset. The datasets include
five to eleven modalities per task, covering 12 dis-
tinct sensor types collected from diverse devices
and body locations, demonstrating broad diversity
in sensing configurations.

Data Preprocessing. Following the protocols
established in the original publications (Schmidt
et al., 2018; Kemp et al., 2000; DelPreto et al.,
2022; Stromback et al., 2020; Reiss and Stricker,
2012), raw sensor data were segmented using slid-
ing windows. To prevent data leakage between few-
shot examples and target samples, we employed
non-overlapping windows (where step size equals
window size). For WESAD, we focused on three
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affective states: baseline, stress, and amusement.
For SleepEDF, we utilized the standard sleep stages
(W, N1, N2, N3, and REM), excluding infrequent
classes. In ActionSense, we grouped the labels into
five high-level categories (spreading, peeling/slic-
ing, jar operations, wiping, and tableware tasks) fol-
lowing the categorization in DelPreto et al. (2022);
“pouring” was excluded due to insufficient samples.
We utilized data from both the left and right arm-
bands. For MMFit, we excluded data from the left
smartphone due to sample sparsity. For PAMAP2,
we selected 12 of the 18 original activity classes
(e.g., walking, cycling, ironing) that provided suffi-
cient sample density.

Feature Extraction. Features were extracted ac-
cording to dataset-specific guidelines or established



Method WESAD SleepEDF  ActionSense MMFit PAMAP2 Avg.
Modality agents (single-round)

+ Debate 0.907 +£0.024 0.588 +£0.031 0.607 £0.031 0.953 £0.012 0.551 £0.026 0.721 +0.025
+ MAD 0.847 £0.030 0.551 £0.030 0.591 +0.030 0.960 +£0.011 0.581 +£0.026 0.706 % 0.025
+ CMD 0.899 +£0.025 0.575 +0.032 0.608 +0.031 0.964 +0.011 0.553 £0.026 0.720 + 0.025
+ ReConcile 0.886 +0.026 0.557 £0.030 0.596 +£0.031 0.944 £0.013 0.566 +0.026 0.710 + 0.025
+ Semantic Fusion 0.825 £ 0031  0.580 +£0.031  0.605 £0.033 0.964 £0.011 0.559 +£0.026 0.707 +£0.026
+ Statistical Fusion ~ 0.927 +0.021  0.592 +£0.032 0.597 £0.033  0.960 +£0.011  0.534 £0.026  0.722 + 0.026
ConSensus 0.880 +0.029  0.600 +0.031  0.611 +0.031 0.967 +£0.010 0.558 +£0.026 0.723 +0.026

Table 5: Comparison of ConSensus with multi-agent debate baselines under equal token cost (without iterative
debate rounds). Results for the individual semantic and statistical fusion agents are also reported for reference. The
best and second-best accuracies are highlighted in bold and underline, respectively.

signal processing methods (Schmidt et al., 2018;
Xu et al., 2025), as summarized in Table 4. To eval-
uate system robustness against sensor failure, we
simulated 10%, 30%, and 50% modality dropout
rates by randomly masking sensor streams with
zeros prior to feature extraction. Detailed task de-
scriptions, class definitions, and feature extraction
procedures were stored as metadata and dynam-
ically parsed into the LLM prompts to provide
environmental context.

Data Split. We split each dataset into an example
set (for 1-shot in-context learning) and a test set to
prevent data leakage. We adopt a within-subject
split strategy, assuming each user provides a single
data instance per class with minimal effort. Sensor
data such as EEG exhibit substantial inter-subject
domain shift (Lotte et al., 2018; Wang et al., 2019),
which even remains an open challenge in the sens-
ing community. Since LLMs are highly sensitive
to in-context examples, cross-subject examples
can incur significant performance variance. As
our primary goal is to analyze multimodal fusion
behavior under controlled conditions, we adopt
within-subject calibration to isolate fusion effects
from confounding domain-shift factors.

Data Subsampling. Due to the high token cost
of using heavy sensor feature sequences with
multiple LLMs (gpt-o0ss-20B, gpt-o0ss-120B,
Llama-3.1-8B-Instruct, and Llama-4-Scout-
17B-16E) and multi-agent baselines that require
iterative debate rounds, we evaluate ConSensus on
balanced dataset subsets. We sample 50 instances
per class for WESAD, SleepEDF, and ActionSense
(datasets with < 10 classes), and 30 instances per
class for MMFit and PAMAP2 (datasets with > 10
classes), resulting in test sets of 150-360 samples
per task. This subsampling strategy is adopted
solely to ensure computationally feasible compari-
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son across methods under identical budgets, rather
than as a requirement of the proposed framework.

We construct a single maximally large and di-
verse test split for each dataset to maximize sam-
ple coverage under limited computational budgets.
Since ConSensus is training-free and determinis-
tic (temperature= 0 for all methods except Self-
Consistency), the main source of randomness arises
from dataset subsampling. We therefore report
standard deviations using 1,000-iteration bootstrap
resampling to estimate variance over samples. This
evaluation protocol is adopted to prioritize broad
benchmark coverage with multiple tasks and sen-
sors, rather than to restrict statistical rigor.

B Multi-Agent Debate Performance
without Iterative Rounds

In our main experiments, multi-agent debate base-
lines (Debate, MAD, CMD, ReConcile) employ
two additional iterative rounds to refine initial pre-
dictions. These additional rounds incur substan-
tially higher token cost than ConSensus. Without
these iterative rounds, Debate and CMD reduce
to majority voting, equivalent to our statistical fu-
sion agent, while MAD reduces to an LLM judge,
equivalent to our semantic fusion agent. ReConcile
differs by applying confidence-weighted voting.
To compare performance under comparable to-
ken budgets with ConSensus, we evaluate all base-
lines without iterative debate rounds. Table 5 re-
ports the results. Debate and CMD exhibit iden-
tical performance to statistical fusion, and MAD
mirrors semantic fusion, as expected. ReConcile
shows reduced accuracy (71.0%) when iterative re-
finement is removed, performing 1.3% lower than
ConSensus. Overall, ConSensus consistently out-
performs debate-based baselines under equal token
cost, demonstrating that its hybrid fusion achieves



superior accuracy without relying on expensive it-
erative deliberation.

C Prompt Templates

We provide the detailed prompts used in the
single-agent baseline and ConSensus for the
SleepEDF (Kemp et al., 2000) dataset. We present
the SYSTEM and USER prompts for each special-
ized agent. To maintain brevity, recurring content
or dataset-specific parameters are represented as
placeholders (e.g., <classes>).

Single-Agent Baseline. The system prompt as-
signs the agent’s role and details the task context.
The user prompt provides a one-shot example and
the multimodal features. It mandates a structured
JSON output to facilitate automated parsing of the
agent’s reasoning.

System prompt

You are multimodal sensing agent that solves
a sensing task. You have the following
information about the task:

Task: Classify the user’s sleep stage:
<classes>, based on physiological signals
collected from wearable sensors.

Classes: <description of the classes>
You will receive sensor features from multiple
modalities, and you have the following
information about the modality: {<modality
1>: {"Data collection": <data collection
protocol>, "Feature extraction": <feature
extraction methods>}, <modality 2>: ...,
(repeated for all modalities)}

Your goal is to analyze the features and
provide a reasoned answer using your
knowledge.

User prompt

You have received sensor features from
multiple modalities:

Examples:

Sensor values might not always align with
your inherent knowledge due to differences
in data collection or processing. So, we
included a few labeled examples to help your
interpretation:

Example of <class 1>:

- <feature name>: <value>
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- (repeated for all modality features)
Example of <class 2>: ...
(repeated for all examples)
Current sample features: ...

Please provide your answer for the task
among <classes> and the reasoning for your
answer. Note that the sensor features might be
wrong due to the data collection or processing.
You can evaluate the quality of the features by
checking the examples you have.

Respond in the following strict JSON
format: {"REASON": "<Reasoning for the
answer>", "ANSWER": "<Answer among
<classes>>"}

Do not include any additional text outside of
the JSON.

Modality Agents. We provide a modality agent
prompt for EEG-Pz-0z in the SleepEDF dataset.
This agent has a modality-specific role while using
the same task template as the single-agent baseline.
It follows the same user prompt structure as the
single-agent baseline; the only difference is that
it includes only the EEG-Pz-0z features instead of
the full multimodal feature set.

System prompt

You are EEG-Pz-Oz agent that solves a sensing
task.
<task description prompt>

User prompt

You have received sensor features from
EEG-Pz-Oz modality:

<modality-specific example prompt>
<modality-specific sample prompt>

<instruction prompt>
<formatting prompt>

Semantic Fusion Agent. We assign the role of a
fusion agent and instruct it to aggregate multiple
outputs from the modality agents to solve the task.
The outputs from all modality agents are merged
and passed to the prompt. It is then instructed to
generate a final output based on its own knowledge
and expertise.



System prompt

You are a fusion agent that solves a multimodal
sensing task based on interpretations from
multiple sensing agents.

<task description prompt>

You will receive reasonings and answers from
multiple agents based on their interpretations
of different modalities. Your goal is to provide
a final reasoned answer for the task.

User prompt

You have received responses from multiple
sensing agents:

{"EEG-Fpz-Cz": <modality agent output>,
"EMG-submental": ..., (repeated for all
modality agents)}

Using your own knowledge and expertise,
analyze the reasonings and answers and
provide a final reasoned answer.
<formatting prompt>

Statistical Fusion Agent. The statistical fusion
agent shares the same system prompt as the seman-
tic fusion agent but utilizes a distinct user prompt.
It is provided with the <majority-voted answer>
and tasked with justifying this consensus by iden-
tifying potential failure modes in the dissenting
modality agents.

User prompt

You have received responses from multiple
sensing agents:
<responses from modality agents>

You are on the side that the correct answer
is <majority-voted answer> which is
the majority answer. Based on the given
reasonings and answers, provide a final
reasoned answer for the task.

For agents who provided different answers
from <majority-voted answer>, explain
why their reasoning is likely affected by
noise or unreliable signal interpretation. Stay
consistent with the position that the correct
answer is likely <majority-voted answer>.
<formatting prompt>
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Hybrid Fusion Agent. The hybrid fusion agent is
guided by a system prompt that assigns it the role
of a coordinator for reconciling the outputs of the
fusion agents. It is provided with (i) the modality
agents’ outputs and (ii) the responses from both
semantic and statistical fusion agents. Its task is
to evaluate these responses and provide the final
consolidated output.

System prompt

You are a coordinator agent that solves a multi-
modal sensing task based on interpretations
from multiple sensing agents.

<task description prompt>

You will receive reasonings and answers from
multiple agents, each interpreting different
modalities, as well as two fusion agents that
have already aggregated these responses in
different ways. Your goal is to coordinate the
responses from the fusion agents and provide
a final reasoned answer for the task.

User prompt

You have received the following information.
1. Original responses from individual modality
agents:

<responses from modality agents>

2. Responses from fusion agents:

<response from the semantic fusion
agent>

<response from the statistical fusion
agent>

Your task is to determine the responses
from the fusion agents and provide a final
reasoned answer for the task.

<formatting prompt>

D Qualitative Analysis

We present outputs from the single-agent base-
line and ConSensus to illustrate the collaborative
decision-making process, using examples from the
SleepEDF dataset.

Single-Agent Baseline. In this example, the
ground-truth label is REM, but the single-agent
baseline incorrectly predicts N2. While the agent
performs plausible reasoning on the spectral fea-
tures, it fails to integrate the subtle respiratory cues



that output REM from light sleep.

LLM response (Sinlge-agent)

{"REASON": "The ratio of (delta+theta) to
(alpha+beta) for both Fpz-Cz (9.34) and Pz-
Oz (3.75) falls between the typical values for
wakefulness (=~ 6.1 and 1.5) and stage N2
(= 10.6 and 4.5). The delta power (86.75)
is higher than in N1 but much lower than in
deep sleep (N3). Alpha and beta powers are
lower than in N1/N2 but higher than in wake-
fulness, indicating a transition toward sleep.
The k-complex power and EMG activity are
low, suggesting a lighter sleep stage. EOG
shows many large eye movements and a high
slow-movement ratio, which is more consistent
with wake or N1 rather than REM. Overall, the
feature pattern best matches stage N2, the in-
termediate sleep stage.”, "ANSWER": "N2"}

However, when isolating the respiration data via
a specialized modality agent, the correct stage is
identified:

LLM response (Respiration modality agent)

{"REASON": "The current sample shows an
inhale duration longer than exhale (ratio 1.39)
and an inhale mean of 2.49 s versus exhale
mean of 1.79 s, which aligns with the REM
example where the inhale is longer than the
exhale (ratio 1.33). Other REM characteris-
tics—such as a relatively high respiration rate
(~13 breaths/min), moderate duration (~4.6 s),
and moderate stretch—are also reflected in the
current data. In contrast, the other stages (W,
N1, N2, N3) all have inhale/exhale ratios below
1 and different mean durations. Therefore, the
most consistent match is REM.", "ANSWER":
"REM"}

LLM response (Semantic fusion agent)

{"REASON": "The most reliable indica-
tor of sleep stage is the EEG. While
the frontal channel (Fpz-Cz) shows a high
(delta+theta)/(alpha+beta) ratio typical of N2,
the posterior channel (Pz-Oz) displays a ra-
tio (3.75) that lies between the typical REM
value (=2.6) and the N2 value (=4.5), and its
other features (lower alpha/beta, lower vari-
ance) are more consistent with REM than with
deeper stages. The respiratory pattern shows
an inhale/exhale ratio >1 and a respiration
rate (~13 breaths/min) characteristic of REM.
EMG amplitude is low compared with wakeful-
ness, which aligns with REM muscle atonia, al-
though it is not as low as would be seen in deep
sleep. EOG indicates a high slow-movement
ratio, but this can be influenced by sensor noise
and is not a definitive marker for N3. Consid-
ering the stronger evidence from EEG (poste-
rior channel) and respiration, the overall pat-
tern points to REM sleep. Therefore the most
plausible classification is REM.", "ANSWER":
"REM"}

However, the semantic fusion agent is suscep-
tible to prior-knowledge bias, where it may over-
rely on a single modality output even when it is
incorrect. For example, in an N1 stage sample,
we observed a case where the respiration agent
incorrectly suggested N2; despite the majority of
other agents correctly identifying N1, the semantic
agent erroneously followed the respiration agent.

LLM response (Semantic fusion agent)

{"REASON": "The most reliable signals for
sleep staging are the EEG and respiration
measures. Both EEG channels report low-
amplitude, low-power activity, which is incon-
sistent with deep sleep (N3) that would show
high-amplitude slow waves, and also inconsis-
tent with REM, which would typically show

Semantic Fusion Agent. In the previous exam-
ple, while several modality agents provides incor-
rect classifications, the EEG-Pz-Oz and respiration
agents correctly identify the REM stage. The se-
mantic fusion agent successfully resolves this cross-
modal conflict by prioritizing the high-fidelity evi-
dence correct modality agents.

characteristic sawtooth activity and higher dy-
namic range. The EOG channel’s lack of
large eye movements rules out REM and is
compatible with both light and intermediate
stages, but does not distinguish N1 from N2.
The respiration data shows a moderate stretch
(= 2.2 x 10°L), a respiration rate of 13.4
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bpm, and exhale/inhale durations around 2.2
s—values that fall squarely within the typical
range for stage N2 and are less compatible with
the lower volume, longer duration pattern of
N3 or the shorter, higher-rate pattern of REM.
The EMG signal is intermediate between wake-
fulness and deeper stages, again pointing to a
transitional stage rather than deep sleep. Given
that the majority of modalities (EEG, respira-
tion, EMG) lean toward an intermediate sleep
stage and the EOG does not provide evidence
for REM, the most consistent classification is
stage N2.", "ANSWER": "N2"}

can misclassify light sleep as deep sleep. The
EEG-Pz-Oz channel indicates REM based on
low dynamic range and sawtooth power, yet
its (delta+theta)/(alpha+beta) ratio is interme-
diate and the alpha/beta ratio is higher than the
REM prototype, suggesting noise or cross-talk
from the adjacent frontal channel. Finally, the
respiratory signal suggests N2 due to moderate
breath duration and volume, but respiration
alone is a poor discriminator between N2 and
N3 and is highly variable across individuals.
Given the central EEG and EMG consensus
and the known unreliability of single-modality
cues in isolation, the most reliable conclusion

is that the subject is in the N1 stage.", "AN-
SWER": "N1"}

Statistical Fusion Agent. To mitigate semantic
errors, the statistical fusion agent provides a com-
plementary perspective by anchoring its reasoning
to the majority consensus. In the aforementioned
failure case, it identifies that the majority of modal-
ity agents point to N1 and provides a justification
for why dissenting agents are likely erroneous.

Hybrid Fusion Agent. The hybrid fusion agent
then evaluates these competing reasoning paths.
In the previous example, it follows the statistical
consensus.

LLM response (Statistical fusion agent)

{"REASON": "The two modalities that are
most directly linked to sleep stage classifica-
tion—central EEG (Fpz-Cz) and submental
EMG—both point to light sleep (N1). The
Fpz-Cz feature vector shows low-amplitude,
low-power characteristics (high variance rel-
ative to N1, low delta power, low delta/theta
ratio, and an alpha/beta ratio close to the N1
mean) that match the prototypical N1 pro-
file far better than any other stage. The sub-
mental EMG is in the intermediate activity
range between wakefulness and deeper stages,
with mean and standard deviation values, per-
centiles, and peak statistics that align with
published N1 values. These two signals are
the gold standards for distinguishing wake,
N1, N2, N3, and REM, so their agreement
strongly supports an N1 classification. The
other modalities provide weaker or conflict-
ing evidence. The EOG horizontal channel,
while showing low rapid-movement power and
high slow-movement power, also exhibits an
unusually high dynamic range and a very low
difference variance, which are typical of mea-
surement artifacts or electrode misplacement.
Because eye-movement activity is only one
component of REM and N3, relying on it alone
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LLM response (Hybrid fusion agent)

{"REASON": "The most reliable evidence
comes from the central EEG (Fpz-Cz) and
submental EMG, both of which are the
gold standards for distinguishing sleep stages.
The Fpz-Cz channel shows low-amplitude,
low-power activity with variance and delta
power values that match the prototypical N1
profile far better than any other stage. The
submental EMG is in the intermediate activity
range between wakefulness and deeper stages,
with mean, standard deviation, and peak statis-
tics that align closely with published N1 val-
ues. These two signals agree on light sleep
(N1). Other modalities provide conflicting or
weaker cues: the Pz-Oz channel suggests REM
but its intermediate (delta+theta)/(alpha+beta)
ratio and higher alpha/beta ratio point to noise;
the EOG horizontal channel indicates minimal
rapid eye movements, which is typical of both
N1 and N2 and not decisive; the respiration sig-
nal is consistent with N2 but respiration alone
is a poor discriminator. Given the consensus of
the most reliable modalities and the known un-
reliability of single-modality cues in isolation,
the most robust conclusion is that the subject
is in the N1 stage.", "ANSWER":"N1"}
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