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From Vision to Motion: Translating Large-Scale
Knowledge for Data-Scarce IMU Applications
Hyungjun Yoon , Hyeongheon Cha , Hoang C. Nguyen , Taesik Gong , and Sung-Ju Lee

Abstract—Pre-training representations acquired via self-
supervised learning could achieve high accuracy on even tasks
with small training data. Unlike in vision and natural language
processing domains, pre-training for IMU-based applications is
challenging, as there are few public datasets with sufficient size
and diversity to learn generalizable representations. To overcome
this problem, we propose IMG2IMU that adapts pre-trained
representation from large-scale images to diverse IMU sensing
tasks. We convert the sensor data into visually interpretable
spectrograms for the model to utilize the knowledge gained from
vision. We further present a sensor-aware pre-training method
for images that enables models to acquire particularly impactful
knowledge for IMU sensing applications. This involves using
contrastive learning on our augmentation set customized for the
properties of sensor data. Our evaluation with four different IMU
sensing tasks shows that IMG2IMU outperforms the baselines
pre-trained on sensor data by an average of 9.6%p F1-score,
illustrating that vision knowledge can be usefully incorporated
into IMU sensing applications where only limited training data
is available.

Index Terms—Mobile sensing, deep learning, self-supervised
learning, contrastive learning

I. INTRODUCTION

MOBILE sensing powered by deep learning has enabled
various ubiquitous applications in everyday life. Mo-

tion sensing with inertial measurement units (IMUs), such
as accelerometers, is particularly promising due to its broad
applicability, including activity recognition [1], transporta-
tion [2], agriculture [3], and healthcare [4]. However, deep
learning models for IMU sensing rely heavily on task-specific
datasets, where the amount and diversity of labeled training
data limit model performance. Collecting large-scale IMU data
is challenging due to cost, device and user heterogeneity, and
privacy concerns.

Recent research has focused on addressing label scarcity
in deep learning by leveraging representation learning. A
common strategy is self-supervised learning (SSL), which pre-
trains models using large amounts of unlabeled data to capture
general data characteristics through predefined tasks [5]. SSL
has shown remarkable performance in domains with large
public datasets. For example, in natural language processing,
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models such as Llama [6] and the GPT series [7] are pre-
trained on massive Internet text corpora and serve as founda-
tion models for various tasks. Similarly, in computer vision,
pre-training on large-scale datasets such as ImageNet [8],
JFT-3B [9], and LAION-5B [10] has led to state-of-the-art
performance across a range of tasks [11].

In IMU sensing, pre-training with unlabeled sensor data can
enhance downstream performance [12]. Nevertheless, unlike
images and text that benefit from large-scale, diverse public
datasets, existing IMU datasets [13]–[15] primarily focus on
Human Activity Recognition (HAR) and lack diversity. For in-
stance, Capture-24 [13] dataset collects data exclusively from
wrist-worn devices at a single sampling rate, lacking diverse
sensor types, placements, and signal processing methods. As
a result, models pre-trained on such datasets face general-
izability challenges, unable to adapt to tasks with varying
targets, sensor positions, subjects, or sampling frequencies (see
Section V-B1).

Motivated by this challenge, we leverage external knowl-
edge beyond sensor data to tackle IMU sensing tasks. By
transforming IMU data into 2D visual representations such
as spectrograms [16], [17], patterns emerge that are visually
interpretable through attributes such as brightness, shapes, and
spatial structures. These attributes align naturally with the
capabilities of vision models pre-trained on large-scale image
datasets (as detailed in Section II).

Building on this intuition, we present IMG2IMU that
translates the knowledge from pre-trained vision models to
IMU sensing tasks. IMG2IMU transforms IMU data into
spectrograms, mapping the three sensor axes to RGB channels,
following established practices for visualizing sensor data [16],
[17]. By fine-tuning pre-trained vision models with the spec-
trograms, IMG2IMU effectively handles IMU sensing tasks
with scarce labeled data.

However, directly applying vision models introduces a
domain gap. Unlike images, which are often invariant to
transformations like rotations or flips, spectrograms encode
spatiotemporal information and depend on the precise ori-
entation of their axes—time and frequency—making such
transformations disruptive. To bridge this gap, IMG2IMU
incorporates a tailored pre-training method with sensor-aware
augmentations that account for IMU-specific properties. We
define four augmentations—TranslateX, PermuteX, Hue, and
Jitter—to generate positive views for contrastive learning,
ensuring the model learns robust, spectrogram-specific features
during pre-training.
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Fig. 1. Spectrogram images converted from triaxial IMU sensor data of human
activity recognition and roadway classification tasks.

We evaluate IMG2IMU on four diverse IMU sensing tasks
and demonstrate its effectiveness in scenarios with limited
training data. IMG2IMU consistently outperforms existing
self-supervised methods, achieving a 9.6%p improvement in
mean F1-score. These results underscore the potential of
transferring knowledge from large-scale image datasets to
enhance IMU sensing performance.

The key contributions of this work are as follows:

• We propose IMG2IMU that leverages vision knowledge
pre-trained on large-scale image datasets and translates it
into IMU sensing applications on limited data.

• We design contrastive learning using four sensor-aware
image augmentations that bridge the domain gap be-
tween image-based pre-training and IMU sensing tasks,
enabling effective pre-training with images.

• We analyze the contribution of each augmentation to
improving robustness against IMU-specific variations.

• We demonstrate through experiments that IMG2IMU
enhances performance across diverse IMU sensing tasks
in data-scarce scenarios.

II. BACKGROUND AND MOTIVATION

A. Why Visualization Works: Interpretable Features

Data scientists often transform IMU data into visual repre-
sentations (e.g., spectrograms) to improve interpretability [16],
[18]. Visual representations are effective as they make latent
features (e.g., frequency, amplitude, and temporal variation)
perceptible through generally recognizable attributes, such as
brightness, patterns, or colors. This approach minimizes the
need for extensive domain knowledge of raw sensor data,
enabling both human analysts [19] and machine learning
models [17] to extract meaningful insights.

For example, in Figure 1, the spectrograms of a human
activity recognition (HAR) [1] task distinguish jogging and
walking based on distinct patterns. Jogging exhibits a wider
spacing between horizontal stripes, reflecting a higher motion
frequency. Similarly, spectrograms from a roadway classifica-
tion task [2] highlight differences in brightness, where darker
plots correspond to dirt roads with irregular vibrations, in
contrast to smoother asphalt surfaces.

This insight motivates our approach: complex sensing tasks
can be solved by exploiting fundamental visual interpretation
abilities, such as distinguishing colors or patterns, even without
deep knowledge about the specific sensing task. In light of this
intuition, we explore the potential to utilize the knowledge
learned from vision to enhance IMU sensing tasks.

Fig. 2. Flipping and rotating an image from ImageNet (top) and a spectrogram
image (bottom). Deformations misinterpret the spectrograms by swapping the
time-frequency axes and inverting the values along an axis.

B. From Scarce Sensor Data to Abundant Image Data

Publicly available datasets for IMU sensing typically focus
on specific tasks, such as daily activities [1], gait detection [4],
or sports [20]. Although these datasets are valuable, they are
often limited in scale and diversity. Larger-scale efforts [15],
such as Capture-24 [13] and UK-Biobank [14], are restricted
to specific conditions, such as wrist-worn devices measuring
general daily activities. These datasets lack variety in sensor
locations and tasks, leading to suboptimal generalization when
applied to other sensing scenarios, as we demonstrate in
Section V-B1.

In contrast, the field of computer vision has dramatically
benefited from the availability of abundant data. Starting with
ImageNet [8], which contains 1.2 million images in 1,000
classes, vision researchers have significantly scaled the size
of the dataset. Examples include JFT-3B [9], which contains
billions of images, and LAION-5B [10], a dataset of 5.85
billion images. These large-scale datasets provide a rich source
of pre-trained knowledge, enabling vision models to generalize
across diverse applications [21].

Vision models pre-trained on large-scale datasets excel at
extracting foundational features, such as brightness, texture,
and patterns [22], and have been successfully applied to
domains beyond natural images (see Section III-C). Motivated
by their success, we explore leveraging vision models trained
on image datasets to address IMU sensing tasks.

C. Challenges in Bridging Vision and Sensing

While pre-trained vision models offer significant opportuni-
ties for sensor data analysis, applying them directly to sensor
spectrograms introduces unique challenges. Unlike standard
images, spectrograms encode critical information along the
time and frequency axes, where orientation reflects the scale of
values. Transformations such as rotation and flipping, which
preserve labels for standard images, disrupt this information in
spectrograms: rotation swaps the axes while flipping reverses
axis values, as shown in Figure 2. These distortions lead
to misinterpretation and degraded performance when vision
models are naı̈vely transferred to IMU sensing tasks.

To address this, we propose IMG2IMU, which adapts vision
models to sensor data through task-specific augmentations
and fine-tuning. This approach ensures that vision models
effectively align with spectrogram-specific properties, allowing
accurate interpretation of sensor data.
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III. RELATED WORK

A. Self-Supervised Learning for Sensing

Prior works [23], [24] applied self-supervised learning using
a Multi-task transformation prediction for human activity
recognition (HAR). Using Multi-task learning, the original
data is augmented with a random augmentation, and the
network is trained to predict the type of augmentation applied.
SelfHAR [25] integrated the ideas of multi-task learning
and teacher-student self-learning to create an effective semi-
supervised learning framework.

Contrastive learning is another effective method where
MoCo [26] and SimCLR [11], [27] are representative frame-
works. They have been redesigned for HAR as MoCo-
HAR [28], SimCLR for HAR [29], and CSSHAR [30]. An-
other study [31], [32] adopted Contrastive Predictive Coding
(CPC), which trains an encoder to predict the next sequence
chunk based on previous sequences.

Masked region reconstruction [15], [33] is also adopted as a
self-supervised learning strategy for sensory data. Haresaumu-
dram, et al. [12] conducted an assessment of seven state-of-
the-art self-supervised learning methods applied to HAR (e.g.
SimSiam [34]) in addition to previously discussed methods.

While these studies showed their effectiveness for HAR
tasks, IMU sensing applications include diverse target tasks [2]
and subjects [3]. As publically available large-scale sensor
datasets [13], [24] are centered on HAR, the pre-trained model
for sensing has poor generalizability. IMG2IMU resolve this
challenge by interpreting IMU sensor data as images and
utilizing models pre-trained from a larger scale of vision data.

B. Use of Cross-Modal Data for Sensing

Prior studies have explored cross-modal data to enhance
self-supervised learning for IMU sensing. ColloSSL [35]
and COCOA [36] used cross-modal sensor data as positive
view pairs for contrastive learning, while Vision2Sensor [37]
employed vision-based activity recognition to generate labels
for IMU data. However, these methods depend on synchro-
nization between modalities, limiting their applicability to
asynchronous settings. In contrast, IMG2IMU eliminates the
need for synchronization by independently performing pre-
training and fine-tuning.

IMU2Doppler [38] employed IMU data to train models for
mmWave radar sensing. While this approach highlights the
potential of leveraging IMU data for cross-modal applications,
IMG2IMU addresses the scarcity of IMU sensor data by
utilizing images for pre-training. Similarly, Tong et al. [39]
used videos to construct semantic spaces for IMU-based
activity recognition, focusing on zero-shot learning. Unlike
IMG2IMU, their method specifically targets semantic embed-
ding construction for HAR and does not explore generalizable
pre-training strategies. IMUTube [40] and IMUGPT 2.0 [41]
tackled data scarcity by generating virtual IMU data, using
videos and textual descriptions, respectively. However, both
approaches struggle to fully replicate real-world sensor noise
and differ from IMG2IMU’s focus on leveraging pre-trained
vision models and addressing data scarcity through tailored
pre-training strategies.

C. Using Pre-Trained Models from Images

Pre-trained models on large-scale image datasets, such as
ImageNet [8] and JFT-3B [9], are highly effective for transfer
learning [42]. These models have demonstrated exceptional
performance across diverse tasks [11], including object detec-
tion [43] and semantic segmentation [44].

The versatility of image-based pre-trained models extends
to diverse domains. For instance, Azizi et al. [45] employed
ImageNet-pre-trained models for medical image analysis, in-
cluding dermatology classification [46] and chest X-ray diag-
nosis [47]. Additionally, pre-trained vision models have been
applied to sound classification [48] by converting audio data
into mel-spectrograms. Building upon these, we designed pre-
training methods tailored to IMU spectrograms.

Recent advancements in Vision-Language Models (VLMs)
(e.g., using BLIP [49] and SAM [50]) further highlight the
power of vision models. By mapping visual representations
on semantic space, VLMs have achieved state-of-the-art per-
formance in data-scarce scenarios [51]. For instance, VLMs
have been used to classify sensor data by associating visual
graphs with textual descriptions [52]. However, the large size
of VLMs limits their applicability in resource-constrained
settings. Our approach leverages lightweight networks and
optimized pre-training strategies to effectively adapt vision-
based models for sensor data.

IV. IMG2IMU

To enhance the performance of IMU sensing tasks when
a fair amount of training data is difficult to obtain, we
propose to utilize large-scale public image datasets to pre-
train a model. Figure 3 overviews our IMG2IMU that consists
of two main stages: (i) pre-training a model using large-
scale image datasets to learn sensor-aware knowledge through
self-supervised contrastive learning, and (ii) transferring the
learned knowledge from the vision model to downstream IMU
sensing tasks that use 2D-transformed sensor data.

A. Converting Triaxial IMU Sensing Data to Images

Spectrograms display the intensity of frequency features
along the time axis. Existing works [16]–[18] showed that the
frequency-based visualization effectively represents features
for various IMU sensing tasks. Building on this foundation,
we set spectrograms as our primary visualization method,
expecting that the ability to interpret visual features from
images can also be applied to spectrograms.

Our research scope is on applications that utilize triaxial
IMU data, reflecting the common practice of measuring motion
across the x, y, and z axes. To harness data in all axes for no
information loss, we map the x, y, and z axes to the RGB
channels to generate a single image, which was shown to be
effective in IMU sensing tasks [16], [18]. This method ensures
that the intensity of motion, measured as the root mean square
of the triaxial values, is reflected in the brightness, derived
from the aggregation of RGB values. It also differentiates each
axis’s contribution through the prevalence of RGB hues.

We acknowledge several issues in the mapping strategy.
For instance, an effective augmentation method for sensor
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Fig. 3. Overview of IMG2IMU. (1) Pre-training is performed with the large-scale image dataset collected from the public domain, using contrastive learning
with sensor-aware augmentations. (2) The pre-trained model is transferred to IMU sensing tasks using 2D-transformed triaxial IMU sensor data as input.

X-
ax
is

Y-
ax
is

Z-
ax
is

1. Conversion to spectrogram 2. Map to RGB channel

3. Generate a
3-channel image

Fig. 4. Generation of a 3-channel image from triaxial IMU sensing data.

data is rotation, i.e., switching the x, y, and z axes, which
is the same as changing the image’s RGB color tones (i.e.,
Hue). However, these RBG color tone changes would not be
an ideal image augmentation method; for example, replacing
the blue sky with a green sky does not make sense. This
indicates that following the standard augmentation rules in the
vision domain might fail to transfer knowledge to IMU sensing
tasks effectively. To handle this mismatch between sensor and
image data, we propose a sensor-aware augmentation strategy
that effectively accounts for such variations, detailed in the
subsequent sections.

Figure 4 illustrates the generation process of 3-channel
spectrograms. Spectrograms are created for each axis and
mapped to the corresponding RGB color channels. To stan-
dardize inputs, we resize all spectrograms to match the image
size used for pre-training. This resizing preserves the integrity
of spectrogram characteristics, provided the time window
and frequency range are maintained. Next, we normalize the
spectrograms using the mean and standard deviation of the
pre-training images to maintain consistency between the input
distributions. Key spectrogram parameters, such as the number
of points in the Fast Fourier Transform (nfft), are treated as
hyperparameters and tuned to optimize performance.

B. Sensor-Aware Pre-Training using Image Dataset

1) Contrastive Self-Supervised Learning: To address the
unique challenges presented by the distinct characteristics of

spectrograms compared with conventional images (Figure 2),
IMG2IMU employs contrastive learning [26], [27] for pre-
training. We use contrastive learning for its exceptional perfor-
mance in training vast unlabeled data [11]. More importantly,
it has the capability to selectively train knowledge that is valu-
able for IMU sensing while avoiding incompatible information
from public image datasets.

Contrastive learning generates a pair of augmented views
from a single source, ensuring that these views retain essential
mutual information about their inherent characteristics. The
goal during training is to enhance the model’s ability to
identify and align these augmented pairs while distinguishing
them from unrelated examples. The model is trained to capture
the intrinsic features maintained across augmentations. We
focus on the strategic use of augmentations in contrastive
learning; by selecting appropriate augmentations, we can direct
the model to learn particular feature insights. For example,
scaling augmentation teaches the model to recognize an object
with different sizes as similar entities. In contrast, color aug-
mentation trains it to understand that objects are similar with
varying colors. In IMG2IMU, we define tailored augmenta-
tions designed for IMU sensing tasks, empowering IMG2IMU
to acquire useful knowledge, detailed in Section IV-B2.

IMG2IMU implements contrastive learning based on
MoCo [26] as it uses a much smaller batch size while achiev-
ing comparable performance compared with other baselines
such as SimCLR [27]. This efficiency allows operating in
resource-constrained environments, resulting in greater scal-
ability. MoCo maintains two encoders; the query encoder and
the key encoder. The query encoder generates an embedding
named q from a data sample. It generates embedding named
positive key, k+, from the positive pair of the sample, and
negative keys ki(i = 0, 1, 2, . . . ,K) that are encoded from the
other data points. The training objective is to make the query
q distinguish the positive key (k+) from the other negative
keys (ki). The query encoder is trained with InfoNCE loss [53]
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during learning. We calculate the InfoNCE loss as follows:

Lq = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (1)

where τ indicates the temperature parameter for controlling
the concentration level. MoCo maintains a large set of negative
keys by constructing a dictionary that stores data of multiple
encoded keys. A moving average is used to update the key
encoder based on the weights trained from the query encoder,
which enables the dictionary to be dynamic. After contrastive
learning is performed on the training image data, the param-
eters of the query encoder network are used as pre-trained
weights for the downstream IMU sensing task.

2) IMU Sensor-Aware Augmentations: Data augmentation
preserves the key property of data and generates a differ-
ent view of the same data. For instance, images are often
rotated, flipped, and scaled to change their viewpoint while
maintaining color and relative shapes. Using augmentations in
contrastive learning, the model learns what mutual information
to use to cognize the original and augmented data as the same.
Augmentation types should be carefully selected based on
what knowledge the model aims to acquire. The usefulness of
different augmentations varies in different downstream tasks.

Our downstream tasks take spectrograms derived from triax-
ial IMU sensing data as the input. Compared with the images
from public datasets used for pre-training, spectrograms show
unique properties. Spectrograms have directional properties
along the axes; thus, augmentations such as flipping images
would damage the downstream performance as they reverse
the time or frequency values. Similarly, rotating images would
distort nature as each axis has fixed values of time and
frequency. Further, the RGB channels in our spectrograms
indicate the triaxial axes of x, y, and z, thus we must be
aware of the difference in the channel information. These are
the important domain gap between public image datasets and
sensor data, and we thoughtfully select the augmentations for
IMG2IMU to bridge this gap.

We identify the important properties of sensor data that must
be preserved and define augmentations to assist the model in
learning useful knowledge for downstream IMU sensing tasks.
Figure 5 visualizes the selected image augmentations.

• TranslateX randomly shifts image data on the x-axis. Sensor
data are segmented into fixed-size time windows for pro-
cessing. During this stage, the window can be started at any
temporal point from the same context. As the key features of
data are within the time window, the classification remains
the same regardless of whether a window is shifted left
or right over the time axis. Based on this property, we
expect that TranslateX benefits sensing tasks as the x-axis
represents time in the spectrogram.

• PermuteX splits data over the x-axis into multiple chunks
and randomly perturbs the chunks. For time-series data, per-
mutation is known to preserve local temporal features while
distorting the global structure to produce a different view
for the same label [54]. We apply PermuteX exclusively to
the x-axis to introduce variability in the temporal dimension
while preserving the frequency-domain features along the y-

TranslateX PermuteX Hue Jitter

Fig. 5. Sensor-aware augmentations in IMG2IMU.

axis. By keeping the y-axis unchanged, PermuteX maintains
the frequency-specific patterns.

• Hue alters the color tone of image data while preserving
the overall brightness and contrast. The values between
RGB channels are often interchanged with Hue. In IMU
sensing, x, y, and z channels are interchangeable based on
the rotation of the sensor. Reflecting the property, rotation is
commonly used as an augmentation for triaxial sensors [54].
Our approach maps the sensor data’s x, y, and z channels
to the RGB channel of an image. By applying Hue, we
replicate the effect of interchangeability between the three
channels in the triaxial IMU sensing data.

• Jitter adjusts the color by adding random noise for each
pixel in the image. We implemented the augmentation by
injecting uniform noise centered on zero to preserve the
average color information of the image. Jitter mimics the
augmentation method of adding random noise to sensor
data. Sensors can be affected by random noise, which in turn
can affect the spectrogram by making some regions brighter
or darker. We adopt Jitter to make the model robust to the
noise that could be included in sensor data from uncontrolled
environments.

3) Effect of Sensor-Aware Augmentations: We propose four
sensor-aware image augmentations: TranslateX, PermuteX,
Hue, and Jitter. To assess their impact on improving the
interpretation of visualized IMU data when used in pre-
training with images, we conducted an ablation study.

First, we prepared five pre-trained vision models. The base-
line model utilized all four sensor-aware image augmentations
to generate positive views for contrastive learning. Addition-
ally, we created four ablation settings, each omitting one
specific augmentation while using the remaining three. Thus,
we examine the impact of excluding a particular augmentation
on model performance. All models were pre-trained on the
ImageNet dataset [8] under identical conditions.

To assess robustness, we curated four test datasets with
distinct variations, reflecting natural sensor data variability.
Using the WISDM dataset [1], a widely used benchmark for
human activity recognition, we generated synthetic datasets by
applying sensory augmentations [54]: (i) time-shifted data, cre-
ated by shifting sensor readings left or right; (ii) masked data,
simulating sensor disconnections by distorting global struc-
tures while preserving local temporal features; (iii) rotated
data, generated through linear transformations that interchange
axis values, and (iv) noised data, augmented with uniform
random noise. Figure 6 illustrates these augmented datasets
and their resulting spectrograms.

Finally, we compared the performance of the models across
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TABLE I
THE IMPACT OF EACH SENSOR-AWARE IMAGE AUGMENTATION ON IMPROVING ROBUSTNESS AGAINST SENSORY PERTURBATIONS APPLIED TO THE

WISDM DATASET [1]. T, P, H, AND J DENOTES TranslateX, PermuteX, Hue, AND Jitter RESPECTIVELY. WE REPORT THE DROP OF THE F1-SCORE IN EACH
SENSORY AUGMENTATION COMPARED WITH THE ORIGINAL DATA. THE LARGEST DROP SHOWN IN F1-SCORE (±1%) IS IN BOLD.

Augmentations original time-shifted masked rotated noised

T P H J F1 F1 drop F1 drop F1 drop F1 drop
! ! ! ! 0.754 0.545 −27.75% 0.534 −29.16% 0.695 −7.83% 0.580 −23.10%
✗ ! ! ! 0.686 0.434 −36.78% 0.468 −31.83% 0.684 −0.34% 0.627 −8.68%
! ✗ ! ! 0.687 0.435 −36.66% 0.387 −43.76% 0.661 −3.90% 0.533 −22.48%
! ! ✗ ! 0.704 0.559 −20.68% 0.548 −22.24% 0.539 −23.45% 0.622 −11.59%
! ! ! ✗ 0.749 0.540 −27.87% 0.502 −33.02% 0.695 −7.19% 0.562 −24.91%

time-shifted masked noised rotated

Fig. 6. Four versions of synthetic data from the WISDM [1] dataset to
replicate sensor data augmentations: (i) time-shifted, (ii) masked, (iii) rotated,
and (iv) noised. Both the sensor data and the resulting spectrograms are shown.

these datasets. If excluding a particular image augmentation
leads to a significant performance drop on a dataset with a
corresponding sensory augmentation, this suggests that the
excluded image augmentation plays a crucial role in improving
the model’s robustness to the sensory augmentation.

Table I presents the results for each pre-trained model
across different augmented sensor datasets. We evaluated the
F1-score for each model applied to each dataset. Note the
performance drops when different sensory augmentations are
applied compared to the original dataset. The pre-trained
model with our four sensor-aware augmentations performed
the best for all datasets. When we excluded each augmentation,
performance dropped to different degrees.

We examined how the absence of each sensor-aware image
augmentation influenced robustness. On time-shifted data, the
models trained without TranslateX and PermuteX showed the
largest drops, indicating that these augmentations help pre-
serve local temporal structures. Similarly, removing PermuteX
significantly impacted the model’s performance on masked
data, which is designed to distort the global features. It
verifies that PermuteX enhances local feature extraction. For
rotated data, eliminating Hue weakened robustness to rotation,
resulting in a substantial performance drop. Lastly, on noisy
data, the pre-trained model without Jitter performed the worst,
confirming its role in mitigating noise.

While using the four augmentations generally improves
performance, applying all of them is not always optimal. In
synthetic datasets except rotated, eliminating Hue resulted
in better performance than utilizing all. This occurs because
our framework randomly selects an augmentation, and adding
more augmentations reduces the likelihood of applying those
that are more critical for a given dataset. The effectiveness
of an augmentation depends on the key features that must be
preserved or learned. Therefore, while IMG2IMU provides a
general pool of four augmentations, selecting relevant ones or
incorporating additional augmentations when the dataset has
distinct characteristics (e.g., extensive missing data or frequent

rotations) is critical.
To summarize, we validated that TranslateX, PermuteX,

Hue, and Jitter serve as sensor-aware augmentations that
align with general sensory properties [54]. More importantly,
our findings highlight that augmentation selection should be
dataset-specific. By understanding the correlation between
augmentation types and sensor variations, developers can fine-
tune augmentation strategies to maximize performance.

C. Fine-Tuning to IMU Sensing Tasks

Reflecting the scarcity of sensor data, our problem setting
assumes only a few samples are available for fine-tuning.
We follow a typical fine-tuning setup; the model trained on
the public image dataset is fine-tuned on a small subset
of data from each downstream sensing task. As shown in
Figure 4, the data from downstream tasks, which are from
IMU sensing applications, are represented as spectrograms.
We adopt a popular linear evaluation protocol, freezing the
backbone networks and training a fully connected layer as the
linear classifier at the end of the backbone network.

V. EVALUATION

A. Experimental Setup

1) Datasets: IMG2IMU utilizes image datasets to pre-train
representations for downstream sensing tasks. We employed
ImageNet [8], a widely known image dataset with 1.28M
samples. For comparison, we used the Capture-24 [13] dataset
for pre-training for sensor-based baselines. Capture-24 com-
prises accelerometer data collected from wrist-worn devices
of 151 participants. It comprehensively tracks daily activities,
encompassing 4,000 hours of data sampled at 100 Hz.

We assessed the effectiveness of the pre-trained models
through their application to four different IMU sensing tasks,
all utilizing triaxial accelerometer data for classification. To
thoroughly investigate the generalizability, we chose datasets
based on the diversity of subjects, sensor position, and tasks.
WISDM [1] covers human activity recognition tasks. Six
activities of sitting, standing, walking, jogging, walking down-
stairs, and walking upstairs were performed by 36 participants.
Participants carried smartphones in their pockets during the
experiment, where accelerometer data was collected.
Goat Movement [3] contains activity recognition for goats on
farms. Data was collected by six accelerometers attached to
the collar-shaped device worn by five goats. Activities include
stationary, walking, eating, running, and trotting. We omitted
eating as it did not have enough samples.
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PVS [2] is designed for roadway classification. Accelerome-
ters were placed on the vehicles, and the data was measured
from three drivers driving three different types of cars. We use
the label information indicating the type of roadway for our
main classification task: asphalt, dirt, and cobblestone.
Daphnet [4] is used to detect the freeze of gait for Parkinson’s
disease patients. A wearable was attached to the ten users
(ankle, leg, and waist), and the acceleration was measured.
We use the data measured from the ankle to differentiate the
positional property from WISDM.

2) Data Preprocessing: All of the images were resized
to 128 × 96 pixels. The images were then normalized using
ImageNet statistics. The Capture-24 dataset was downsampled
to 50 Hz. Given the variety of downstream tasks, data from
Capture-24 was segmented into windows of 2, 5, and 10
seconds, each with a 50% overlap. Separate models were pre-
trained for each window size, and corresponding models were
utilized for downstream tasks requiring different window sizes.
The Capture-24 data was normalized using its statistics.

All downstream sensing data were resampled to 50 Hz. Data
was windowed into 2, 5, or 10 seconds, using sliding windows
with a 50% overlap. The chosen window size matches the
description in the respective dataset’s original publication [1]–
[4]. All sensory data were normalized based on the statistics
of the pre-training source dataset, following a prior work [12].

Spectrograms were generated from the sensory data.
Spectrogram generation parameters nfft and noverlap, were
treated as hyperparameters. A grid search was conducted
to determine the optimal hyperparameters, with nfft values
{32, 64, 128, 256} and noverlap set at nfft minus 2, 4, 8, and
16 for each nfft value. As described in Section IV-A, each
spectrogram was concatenated into a single RGB image. These
images were resized to 128×96 pixels and normalized using
the ImageNet data statistics.

Each dataset was randomly divided into training, validation,
and testing sets in a 6:2:2 ratio. The splits were based on
distinct subjects, ensuring that data from the same subject
did not appear in multiple splits. For fine-tuning, we selected
very few samples per class (e.g., 10) to simulate data scarcity,
randomly sampling from the training split. We repeated the
experiments using five different random seeds, creating five
independent train-validation-test splits.

3) Baselines: We compared IMG2IMU against nine base-
lines: four models taking raw (1D) sensory data as input
(i.e., sensor-based) and five models utilizing 2D-transformed
spectrograms (i.e., image-based).

For the sensor-based baselines, we selected self-supervised
learning methods designed for human activity recognition
(HAR) [12], [33]. They were pre-trained on the Capture-
24 dataset [13], and the pre-trained weights were used for
the downstream tasks that use waveform data as input. The
following are the sensor-based baselines.
Randomly-initialized (1D) model serves as a baseline for
testing weights on 1D waveform data without pre-training.
LIMU-BERT [33] applies BERT-like masked reconstruction,
designed for HAR using 1D sensor data.
SimCLR (HAR) [29] applies contrastive learning, redesigned
for HAR with 1D inputs and sensory augmentations. Unlike

IMG2IMU, it applies sensory augmentations to the raw sensor
data.
Multi-task learning (HAR) [23] is a prevalent self-supervised
learning technique tailored to HAR. It applies different sensory
augmentations to create unique prediction tasks, all processed
through a single encoder. By training mutual information
between tasks, the encoder learns generalizable representation.
Contrastive Predictive Coding (CPC) (HAR) [31] is a self-
supervised learning method that trains models to forecast
embeddings by aggregating past embeddings. This enables the
model to capture the temporal dynamics and adapt to sensory
tasks. We used the latest version, designed for HAR, achieving
the state-of-the-art benchmark performance.

For the image-based baselines, we compared models pre-
trained on the ImageNet [8] dataset, each utilizing unique pre-
training strategies. These were used for downstream tasks with
2D-transformed spectrograms as input.
Randomly-initialized (2D) model serves as a baseline for test-
ing weights without pre-training, where only the spectrograms
of the downstream tasks are used for fine-tuning.
ImageNet-supervised model is pre-trained on ImageNet using
supervised learning and its labels, with the weights transferred
for downstream tasks using spectrograms.
SimSiam [34] represents contrastive learning that bypasses the
need for negative samples with stop-gradient. It showcases the
application of different approaches in contrastive learning. We
used the augmentations provided by the authors.
MoCo [26] is used as a baseline in contrast to the model using
sensor-aware augmentations. This incorporates the default
augmentations provided in MoCo v2: crop and resize, jittering,
horizontal flipping, and Gaussian blurring.
MoCo + All augmentations (2D) [55] uses a wider set of
image augmentations: rotating, sharpening, shearing, adjusting
contrast, brightness, and color, inverting RGB values, polariz-
ing, posterizing, equalizing, and applying automatic contrast.
They were applied in the MoCo-based pre-training.

As upper bounds, we also set Fully-supervised (1D and
2D) models by training both sensor- and image-based models
using each dataset’s fully available training data.

4) Training Configurations: We used ResNet18 [56] back-
bone and Adam optimizer. IMG2IMU was implemented upon
MoCo [26] by replacing the augmentations to TranslateX,
PermuteX, Hue, and Jitter, without cascading.

Pre-training was conducted over 40 epochs, using a learning
rate of 1e−6 and a batch size of 256. We used a reduced
MoCo feature dimension of 64 and a queue size of 4,096
to decrease the computational load. The learning rate started
from 1e−8 and increased up to 1e−5 for the initial 10 epochs
and dropped to 1e−6 by the last epoch. During fine-tuning,
we loaded the pre-trained weights and replaced the last layer
of ResNet18 with a randomly initialized layer. We leveraged
a linear evaluation protocol, aiming to assess the effectiveness
of the pre-trained weights as a feature extractor. Fine-tuning
involved only a few samples (e.g., 10) from each class and was
conducted over 50 epochs. A batch size of 4 was used for fine-
tuning. We conducted a grid search for optimal spectrogram
generation parameters for each downstream task (described in
Section V-A2).
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TABLE II
F1-SCORES OF IMG2IMU AND THE FINE-TUNED BASELINES USING 10 SAMPLES PER CLASS. SENSOR-BASED BASELINES WERE PRE-TRAINED ON

CAPTURE-24 [13], WHILE IMAGE-BASED BASELINES WERE PRE-TRAINED ON IMAGENET [8]. ENCODERS WERE FROZEN DURING FINE-TUNING, WITH
ONLY THE LAST LAYER TRAINED. HIGHEST F1-SCORES ARE IN BOLD FONTS EXCEPT FOR THE FULLY-SUPERVISED BASELINES.

Pre-Training Method WISDM Goat Movement PVS Daphnet Average

Sensor-based
methods

(Pre-trained on
Capture-24 [13])

Fully-supervised (1D) 0.738 ± 0.100 0.864 ± 0.020 0.722 ± 0.044 0.602 ± 0.041 0.731 ± 0.110

Randomly-init. (1D) 0.550 ± 0.141 0.270 ± 0.123 0.585 ± 0.065 0.420 ± 0.058 0.456 ± 0.184

LIMU-BERT [33] 0.516 ± 0.141 0.450 ± 0.123 0.526 ± 0.065 0.408 ± 0.058 0.475 ± 0.123

SimCLR (HAR) [29] 0.645 ± 0.050 0.585 ± 0.061 0.560 ± 0.113 0.438 ± 0.053 0.557 ± 0.124

Multi-task (HAR) [23] 0.550 ± 0.170 0.662 ± 0.029 0.583 ± 0.051 0.520 ± 0.073 0.579 ± 0.126

CPC (HAR) [31] 0.552 ± 0.151 0.650 ± 0.112 0.578 ± 0.084 0.517 ± 0.083 0.574 ± 0.165

Image-based
methods

(Pre-trained on
ImageNet [8])

Fully-supervised (2D) 0.808 ± 0.097 0.855 ± 0.024 0.716 ± 0.066 0.609 ± 0.067 0.747 ± 0.116

Randomly-init. (2D) 0.374 ± 0.105 0.314 ± 0.055 0.483 ± 0.118 0.456 ± 0.090 0.407 ± 0.115

ImageNet-supervised 0.620 ± 0.043 0.756 ± 0.051 0.535 ± 0.069 0.499 ± 0.101 0.603 ± 0.111

SimSiam [34] 0.613 ± 0.099 0.798 ± 0.093 0.518 ± 0.045 0.465 ± 0.058 0.598 ± 0.143

MoCo [26] 0.689 ± 0.023 0.801 ± 0.057 0.569 ± 0.062 0.502 ± 0.097 0.640 ± 0.119

MoCo + All aug. [55] 0.627 ± 0.035 0.756 ± 0.061 0.470 ± 0.071 0.484 ± 0.093 0.584 ± 0.123

IMG2IMU (ours) 0.739 ± 0.038 0.821 ± 0.024 0.594 ± 0.053 0.547 ± 0.085 0.675 ± 0.114

For sensor-based baselines, except for LIMU-BERT, we
implemented 1D CNNs followed by a fully connected layer,
strictly replicating the network architecture from the prior as-
sessment [12]. For LIMU-BERT, we adopted the transformer-
based structure and training settings from the original paper.
For CPC, we replicated the updated version [31], known
for its enhanced performance. All models were pre-trained
on the Capture-24 [13] dataset for 50 epochs. All image-
based baselines were built upon ResNet18. We maintained
the pre-training configuration of IMG2IMU for MoCo-based
baselines. With SimSiam, we strictly followed the settings in
its official implementation [34]. Pre-training hyperparameters
were optimized via grid search: learning rates from 1e−1,
1e−2, 1e−3, 1e−4, 1e−5, batch sizes from 64, 128, 256 (and
1024, 2048, 4096 for SimCLR, which requires larger batches),
and weight decays from 0, 1e−3, 1e−4. The fine-tuning for
all image-based baselines was conducted in the same setting
as IMG2IMU. Fine-tuning mirrored the IMG2IMU protocol,
training the only last layer for 50 epochs and maintaining a
consistent batch size of 4. Fine-tuning hyperparameters were
optimized, exploring the same range of values as for pre-
training hyperparameters.

Experiments were repeated using five different random
seeds for robustness. All implementations were conducted
using PyTorch and eight NVIDIA TITAN Xp GPUs.

5) Metric: The evaluation datasets contain extreme class
imbalances. We use macro-averaged F1-score which is robust
under class imbalance.

B. Performance Analysis

1) Overall Results: We conducted experiments to investi-
gate the performance of IMG2IMU against the baselines when
only a few labeled data were available. For all pre-trained
models, we used 10 samples per class for fine-tuning. We
examined the performance of the fine-tuned models on the
test data of the same downstream task.

Table II shows the result, where IMG2IMU demonstrates
superior performance over all baselines. When compared
to sensor-based baselines, IMG2IMU achieves a significant
improvement, surpassing the highest F1-score by 9.8%p.
This performance of IMG2IMU is not simply attributed to
the adoption of 2D-transformed inputs, as evidenced by the

poor average F1-score (0.407) of randomly initialized models
with 2D inputs compared with the F1-score of those with
1D sensory inputs (0.456). This highlights the efficacy of
IMG2IMU’s pre-training, which yielded a substantial F1-score
increase from 0.407 to 0.675. This is a marked contrast to the
modest gain of the sensor-based pre-training, which increased
at most from 0.456 to 0.579. This result indicates that pre-
training using Capture-24 is limited in being applied across
downstream tasks involving heterogeneous sensor positions,
subjects, or task types. In contrast, IMG2IMU shows that
pre-training with the ImageNet dataset—despite its lack of
spectrogram images—enables the model to interpret visual
features within spectrograms, illustrating better applicability
of IMG2IMU in various sensory tasks.

Comparison with image-based baselines shows the effec-
tiveness of IMG2IMU pre-training, as they all use the same
ImageNet dataset. IMG2IMU surpasses ImageNet-supervised
and SimSiam by a margin greater than 7%p. Comparison with
two MoCo-based baselines underscores the impact of aug-
mentations. Despite the default MoCo augmentations achiev-
ing the highest performance for typical vision benchmarks,
our findings indicate that our sensor-aware augmentations
are more appropriate for IMU sensing tasks (0.640→0.675).
Furthermore, comparison with MoCo + All augmentations [55]
(0.584→0.675) suggests that merely increasing the augmenta-
tions does not guarantee enhanced performance.

Additional experiments were conducted by varying the
number of training samples ({1, 2, 5, 10, 20, 50}) per class.
Figure 7 shows that generally IMG2IMU performs better than
the baselines, especially when training data is limited. Note
that we do not limit the potential of IMG2IMU to be trained
solely with ImageNet. We anticipate using larger datasets such
as LAION-5B would result in greater benefits.

2) Visualizing Semantic Class-Discriminative Heatmaps:
To evaluate whether IMG2IMU effectively captures sensory
information, we examined the similarity between representa-
tions learned from images and those learned under full super-
vision with sufficient sensor data. We used Grad-CAM [57]
to visualize feature interpretations of the pre-trained models.
By tracking gradient flows in convolutional layers, Grad-CAM
generates a class-discriminative localization map that high-
lights influential regions in images contributing to the target
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Goat MovementWISDM

PVS Daphnet

Fig. 7. Performance of the baselines and IMG2IMU using n training samples where the number of training samples is n ∈ {1, 2, 5, 10, 20, 50}.
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Fig. 8. Grad-CAM comparison on WISDM [1] dataset among Randomly-
initialized (2D), Fully-supervised (2D), and IMG2IMU models. The high-
lighted areas in red indicate the part on which the model focused.

concept prediction. We compared IMG2IMU with the Fully-
supervised (2D) baseline, which is trained on the full sensory
dataset and outperforms other few-shot baselines. Additionally,
we set a Randomly-initialized (2D) model as a baseline to
show the default heatmap from an image-based model without
any pre-trained information. We kept the convolutional layers
of IMG2IMU frozen to preserve the pre-trained weights.

Figure 8 depicts the Grad-CAM heatmaps using the
WISDM [1] dataset. A random sample was selected from
each class. IMG2IMU and Fully-supervised (2D) models
highlight similar regions in the spectrograms across all activity
classes. Overall, the low-frequency band is emphasized in
the spectrograms. Activities with longer durations, such as
walking and jogging, exhibit a broad range of highlighted
temporal features, while shorter-duration activities, like going
upstairs and downstairs, show a narrower range of emphasized
features. Although IMG2IMU is trained solely on a public
image dataset, the Grad-CAM results suggest that it correctly
interprets sensor data, closely aligning with the fully super-
vised model.

C. Performance on Vision Transformers

To further investigate the impact of scaling the encoder
backbone, we conducted experiments using Vision Transform-
ers (ViT) [58]. We examined ViT-S (22M) and ViT-B (84M),
extending beyond ResNet-18’s 11M parameters. For baselines,

ViT-S ViT-B0.4

0.6

0.8

1.0

F1
-s

co
re

MAE
MoCo v3
MoCo v3 + All aug.
IMG2IMU (ours)

Fig. 9. Performance comparison of IMG2IMU and baseline models using
ViT-S and ViT-B as backbone encoders.

we adopted MoCo v3 [59], the latest version of MoCo
optimized for ViT architectures. We evaluated two MoCo v3
variants: MoCo v3 (default) with the augmentation set from
the original paper and MoCo v3 + All augmentations, which
leverages a broader range of augmentations [55]. Additionally,
we included Masked Autoencoder (MAE) [60], a widely
adopted self-supervised learning approach designed for ViT-
based models. Finally, we applied IMG2IMU augmentations
to MoCo v3 and evaluated all models on the WISDM [1]
dataset.

Figure 9 presents the results. On both ViT-S and ViT-B,
IMG2IMU achieved the best performance across all baselines.
On ViT-S, MAE exhibited comparable results to IMG2IMU,
while on ViT-B, IMG2IMU outperformed MAE. Both ViT
variants benefited from IMG2IMU augmentations, consistently
improving over the baseline augmentations. These results align
with our findings on ResNet-18, demonstrating the effective-
ness of IMG2IMU across different architectures.

D. On-device Computational Overhead

We consider an on-device deployment scenario where we
evaluate IMG2IMU’s real-time operation capabilities. We as-
sume that pre-training and fine-tuning are completed with
a powerful server, after which the model is deployed to a
device. Consequently, our focus is on evaluating the overhead
associated with on-device inference.

Our framework incurs overhead from the transformation
into spectrograms and the use of 2D network architecture. To
quantify the overhead, we implemented the IMG2IMU infer-
ence framework on smartphones using the PyTorch Android
library. We evaluated three commodity smartphones running
the fine-tuned IMG2IMU on the WISDM dataset: Galaxy S20
Ultra (8-core CPU, 12GB RAM), Galaxy S22 Ultra (8-core
CPU, 12GB RAM), and Pixel 2 XL (8-core CPU, 4GB RAM).
Overhead was measured in average execution time (ms), CPU
usage (%), and memory utilization (MB) over ten experiments.
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TABLE III
ON-DEVICE COMPUTATIONAL OVERHEAD OF IMG2IMU ON THREE

COMMODITY SMARTPHONES. EXECUTION TIME (MS), CPU USAGE (%),
AND MEMORY UTILIZATION (MB) ARE MEASURED FOR SPECTROGRAM

GENERATION (VISUALIZE) AND MODEL INFERENCE (INFERENCE).

Visualize Inference

Device Time CPU Mem Time CPU Mem

Galaxy S20 Ultra 55.33 116 11 26.47 143 189
Galaxy S22 Ultra 48.72 120 11 16.5 105 174
Pixel 2 XL 88.86 108 13 40.67 133 156

Table III presents the computational overhead measured
on-device. Overall, the framework’s end-to-end computation
time was under 0.15 seconds, demonstrating that IMG2IMU
incurs negligible overhead for real-time on-device inference.
Across all smartphones, spectrogram generation required less
than 13MB of memory and 120% CPU, while 2D inference
used up to 189MB of memory and 143% CPU, confirming its
feasibility for on-device deployment on smartphones.

VI. DISCUSSION AND LIMITATIONS

A. Adaptability to Non-Triaxial IMU Setups

IMG2IMU is designed for triaxial IMU data. Our design
aligns with the common nature of motion sensors that generate
data to represent physical movement in three dimensions [16]–
[18]. By focusing on triaxial data, we take advantage of its
correspondence to the structure of images, where the three axes
map to the RGB channels. This alignment allows IMG2IMU
to leverage pre-trained vision models optimized for capturing
relationships between the color channels. To fully capitalize
on the color relationships inherent in images, we introduced
the Hue augmentation.

However, there are non-triaxial IMU setups, such as single-
axis sensors or setups with more than three channels (e.g.,
combined accelerometer and gyroscope data). In these cases,
IMG2IMU can be adapted through the following strategies:
Single-Axis: for setups that provide single axis or aggregated
motion, we can leverage IMG2IMU by removing the channel-
wise augmentation (Hue), while retaining spatial augmenta-
tions (TranslateX, PermuteX, and Jitter). These augmentations
remain effective for capturing the temporal and positional
patterns even in uniaxial data.
Multi-Axis: for setups with more than three axes (e.g.,
accelerometer-gyroscope), we propose a modality-specific em-
bedding fusion approach. Separate encoders are trained for
each triaxial modality (e.g., one for accelerometer and another
for gyroscope), enabling the model to capture intra-modality
features. The embeddings are then concatenated and passed
through shared projection layers, allowing the system to learn
inter-modality relationships. This approach enables IMG2IMU
to adapt to multi-axis configurations while preserving both
intra- and inter-modality features. Note that our millisecond-
level computation ensures minimal overhead for the fusion
process, making it feasible for multi-modal tasks.

B. Potential for Exploring Sensor-Aware Augmentations

The selection of augmentation types in contrastive learn-
ing strongly impacts the performance of downstream tasks.

IMG2IMU defines four augmentations that benefit contrastive
learning for IMU sensing tasks. This augmentation design was
derived from the key invariants in sensing applications, refer-
ring to the widely accepted sensor data augmentations [54].
While we also attempted other types of image augmentation,
such as Brightness and Contrast, they did not show clear
correlations. Nevertheless, as there are numerous invariants
in sensor data, there could be other augmentations useful
for sensing applications. More augmentations could be built
upon and potentially further improve the pre-trained model’s
performance with IMG2IMU.

C. Potential for Exploring Sensor-Aware Augmentations

The selection of augmentation types in contrastive learn-
ing strongly impacts the performance of downstream tasks.
IMG2IMU defines four augmentations that benefit contrastive
learning for IMU sensing tasks. This augmentation design was
derived from the key invariants in sensing applications, refer-
ring to the widely accepted sensor data augmentations [54].
While we also attempted other types of image augmentation,
such as Brightness and Contrast, they did not show clear
correlations. Nevertheless, as there are numerous invariants
in sensor data, there could be other augmentations useful
for sensing applications. More augmentations could be built
upon and potentially further improve the pre-trained model’s
performance with IMG2IMU.

D. Optimizing 2D Transformation Process of Sensor Data

To apply the knowledge learned from images, we transform
the IMU sensor data into spectrograms. While our results show
that spectrogram conversion benefits diverse sensing tasks
when combined with IMG2IMU, its effectiveness relies on
parameters used in its generation. For instance, spectrograms
may fail to capture key features if the nfft parameter is set
inappropriately. We found that using nfft=128 on the WISDM
dataset achieved the highest 0.739 F1-score, but reducing nfft
to 64 slightly decreased performance to 0.734, and further
reducing it to 32 led to a drop to 0.660. These results indicate
that IMG2IMU’s performance is sensitive to the visualization,
showing the importance of hyperparameter selection.

To mitigate this sensitivity, future work could explore
adaptive spectrogram configurations, dynamically performing
optimal visualization based on data characteristics. Addition-
ally, previous research has demonstrated that alternative 2D
representations [17] can be highly effective for sensor-based
classification. These representations could be integrated into
IMG2IMU by designing augmentation strategies tailored to
their specific properties, further enhancing robustness.

VII. CONCLUSION

We presented IMG2IMU that utilizes the learned represen-
tation from images to IMU sensing tasks. We proposed a new
contrastive learning method that employs image augmentations
explicitly designed for sensing applications and correlates each
augmentation type with sensory properties. Our evaluations
demonstrated that IMG2IMU improves performance on a vari-
ety of IMU sensing applications when fine-tuned to the learned
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representations. IMG2IMU showcased how vision knowledge
can be effectively translated to IMU sensing tasks and is
beneficial for IMU sensing applications that lack large-scale
training data.
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