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Abstract

Android OS is severely fragmented by API updates and de-
vice vendors’ OS customization, creating a market condition
where vastly different OS versions coexist. This gives rise
to compatibility crash problems where Android apps crash
on certain Android versions but not on others. Although
well-known, this problem is extremely challenging for app
developers to overcome due to the sheer number of An-
droid versions in the market that must be tested. We present
RecoFlow, a framework for enabling app developers to au-
tomatically recover an app from a crash by programming
user flows with our API and visual tools. RecoFlow tracks app
feature usage with the user flows on user devices and recov-
ers an app from a crash by replaying UI actions of the app
feature disrupted by the crash. To prevent recurring compati-
bility crashes, RecoFlow executes a previously crashed app in
compatibility mode that is enabled by our novel Android OS
virtualization technique. Our evaluation with professional
Android developers shows that our API and tools are easy to
use and effective in recovering from compatibility crashes.

1 Introduction

In 2022, about 950,000 Android apps were released in the
market for 2.8 billion Android devices [2, 3]. Android app
developers strive to create useful app features, present them
effectively on the user interface (UI), and execute them stably
on user devices for the huge user base. When designing an
app’s Ul they optimize Ul actions (e.g., clicks) for possible
user intents (e.g., setting a password for an app account) to be
easy and efficient. They often create a user flow [4], a diagram
of Ul actions to be taken for a user intent, and improve its
usability over design iterations (see figure 1). When releasing
the app to users, they thoroughly test the user flows on the
app to ensure stable execution on user devices. They typically
target a very low crash rate (< 0.5%) [5, 6] and spend 25-35%

of the development costs for app testing [7].

Despite their efforts, developing a stable Android app
is still challenging due to compatibility crashes, which
are caused by incompatibility between an app and the OS
version that it runs on. Compatibility crashes are difficult
to eliminate due to the open nature of Android platforms.
To support 24,000 different Android device models in the
market [8], the Android Open Source Project (AOSP) allows
device vendors to customize Android OS for a specific device.
For example, a foldable phone vendor customizes Android OS
to adjust UI layouts when the phone is folded, and a low-end
device vendor customizes Android OS’s animation quality to
optimize performance. When Android’s yearly major version
updates are released, the device vendors customize the new
versions again for their devices. During AOSP’s version
updates and device vendors’ customizations, Android OS
APIs are added, modified, and deleted, often in a way that
app developers do not expect and are hard to deal with. Thus,
apps occasionally crash when deployed on Android OSes
that mismatch App APIs and OS APIs [9]. Compatibility
crashes are difficult for app developers to predict, reproduce,
and fix because it is not practically feasible to test their apps
on all Android variations customized for diverse devices.

Consequently, compatibility issues are found in every An-
droid OS version and diverse vendors’ devices. The issues
remain until app developers fix them or incompatible OS
versions and devices are removed from the market. We in-
vestigated the top 50 open-source apps downloaded more
than a million times [10, 11]. We found 99 and 57 compat-
ibility issues due to Android version updates and vendors’
OS customization, respectively. FicFinder [9], Pivot [12], and
CiD [13] found 191, 10, and 7 compatibility issues from 27, 10,
and 7 already published open-source Android apps, respec-
tively. Moreover, when we examined the source code update
history of the apps that fixed their compatibility issues, the
issues lasted for 30 months on average.
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Figure 1: The user flow of mobile Firefox app’s new password setting feature created by Firefox app developers [1].
It describes required UI actions and their order for setting a password. (We omitted 3 out of 8 steps for readability.)

Since app developers cannot prevent every compatibil-
ity crash, Android apps should recover from their crashes.
However, developing a general recovery solution for diverse
apps is problematic because (1) recovering an app’s state
often requires custom logics specific to app internals, and (2)
existing fault tolerance methods, such as application check-
pointing [14], cannot guarantee the complete elimination of
recurring crashes. Although these methods can recover an
app and restart it, the root cause of the problem still exists,
leading to the possibility of further crashes.

To overcome these difficulties, we propose to repurpose
user flow as the basis for a general recovery solution. Our
basic approach is that, when an app crashes, we restore the
app by replaying previously taken Ul actions for a disrupted
user intent. To identify users’ UI actions that belong to a
user intent, we provide app developers with a convenient
API and a visual code generation tool to express user flows
in their apps. For replaying, we provide a record-and-replay
system that matches a user’s Ul actions with a user flow and
replays it. Using user flow is more advantageous than app
state restoration because (1) it is agnostic to app internals
as it only deals with Ul actions, and (2) it does not involve
the restoration of the app state that might be corrupted by
compatibility issues. In addition, we designed a new execu-
tion environment called compatibility mode that prevents our
recovery process from encountering the same compatibility
crash, which we describe in §5.

To demonstrate the idea, we build a crash recovery system,
RecoFlow, that addresses all significant challenges via Ul-
driven compatibility crash recovery. The first challenge is
tracking user intents on a user device for later recovery. Our
API guides app developers to consider one user intent at a
time and develop a user flow, which is a graph of possible
Ul actions to be matched for the intent. With our API and

developer tool, the developers can visually migrate a user
flow on a design document to a Java program by selecting UI
elements on app screens. During an app execution, RecoFlow
holds Ul action records that match with unfinished user flows
and replays them on a crash.

The second challenge is in avoiding repeating the same
compatibility crashes. With RecoFlow, AOSP can micro-
virtualize Android OS on a user device and execute an app
on a compatible guest Android OS with other apps on the
host user device OS. The key idea is (i) designating a small
number of Android OS releases as compatibility OSes, (ii) pro-
viding an execution environment that acts as a compatibility
OS to resolve OS API mismatches, and (iii) enabling an app
to run on a compatibility OS execution environment when it
crashes on the default OS installed on a user device. RecoFlow
automatically detects an app crash, boots a compatibility OS
within a few seconds (2.5 sec on average), and re-launches
the crashed app in the compatibility OS.

Our system evaluation demonstrates that RecoFlow ef-
fectively recovers commodity open-source applications by
replaying our user study participants’ Ul action traces. Our
developer study participants developed app crash recovery
logic for diverse app features with our API. The cost for Re-
coFlow’s compatibility mode is small while it effectively hides
compatibility crashes. The RecoFlow’s compatibility mode
successfully avoids compatibility crashes of one real-world
app and five custom apps. When enabled, the RecoFlow’s
compatibility mode induces only a marginal delay (2.7%) to
app execution with 38.7 MB additional memory.

We make the following contributions:

(1) RecoFlow minimizes mobile user experience (UX) dis-
ruption from compatibility crashes by providing an
API for recovering a crashed app to the state before the
last crash. App developers can write easy-to-maintain



recovery code with our APIL.

(2) RecoFlow’s recovery API addresses developer-guided
record-and-reply (R&R) challenges of users’ UI actions.
For example, RecoFlow enables developers to select
only Ul actions required for crash recovery in a user’s
Ul action history. In existing work, a developer or a
user must R&R their own Ul actions.

(3) RecoFlow is the first compatibility mode app execution
framework for Android.!

(4) RecoFlow implements a novel Android OS virtualiza-
tion technique in a real system that effectively executes
an app in a virtualized OS yet incurs only minimal
overhead.

2 Related Work

There are a few areas of research relevant to RecoFlow and
we survey these in this section.

Tracking user intents using UI actions: Predicting user
intents from their interaction traces has been crucial for mo-
bile apps and the web to improve user engagement, increase
retention, and establish a monetization strategy [15]. Google
Analytics [16], DataDog [17], and other user tracking ser-
vices allow developers to collect users’ Ul interaction traces
in the cloud. However, unlike RecoFlow’s user intent track-
ing API, they do not provide a model or API for mapping
individual UI actions to user intention, leaving developers
to implement it themselves.

UI action emulation: Programmed Ul action emulation has
been adopted for mobile apps and the web for testing [18-
20], app prototyping [21], and automation [22-26]. While a
developer generates, programs, or records Ul actions to be
played in those cases, RecoFlow’s user intent tracking API en-
ables a developer to select users’ Ul actions to be replayed on
user devices. ReCDroid [19], GIFDroid [27] and Yakusu [28]
are automatic Android app crash reproduction systems. They
use natural language information in a crash report to quickly
create a short Ul action trace that reproduces a crash. Their
UI action trace generation is similar to RecoFlow’s selective
UI action replay, as both aim to play minimal UI actions
navigating an app to a previously crashed state. However,
they do not preserve user-specific app context (e.g., a specific
item a user selected before a shopping app crashes) as it only
cares about crash reproduction.

Crash recovery: Many third-party libraries assist in recov-
ering from an Android app crash by restoring an app’s state
after a crash [29, 30], check-pointing an app process [14],
repeating a failed sub-routine [31], and defining fallback for
failure cases [32-34]. However, a recovered app could crash
again as the cause of the crash still remains in the recov-
ered app. Rx [35] recovers a request-response style server

1We will open source RecoFlow with this paper’s publication.
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}4 A Few Seconds

Crash Recovery by | Ul Action Replay Resume

Ul Action History |

,,,,,,,,,,,,,,,,,,,, T amm o isieiE

i IBE i crast

M : s % |

Gl B

]
Recovery Logic Identified Intents

beoneeaeaeas —] Intent N-1 IntentN

Figure 3: Automatic crash recovery with RecoFlow. Re-
covery logic, which is a user flow written in Java, classi-
fies Ul actions into user intents, and RecoFlow recovers
an app by replaying UI actions of an intent disrupted
by the crash.

App Relaunch in
the Compatibility
Mode

software crash. On a crash, it reconfigures the execution
environment (e.g., CPU scheduling algorithm and memory
alignment configuration). It then restores the software to a
previously created checkpoint and replays the last requests
that incurred the crash. If the software crashes again, Rx
repeats restoration and replay in a different execution en-
vironment until the crash disappears. RecoFlow is different
from previous methods as it recovers an Android app in com-
patibility mode where the cause of the compatibility crash
disappears.

Compatibility mode of Windows OS: Windows OS pro-
vides a ‘compatibility mode’ of execution. When enabled, it
links the program with old version OS libraries and APIs [36].
Although RecoFlow’s compatibility mode has a similar goal,
it boots a compatibility OS and launches an app with the
compatibility OS while Windows OS changes libraries to be
dynamically linked during an app launch. RecoFlow not only
replaces host OS’s APIs with compatibility OS’s but also ex-
ecutes OS API functions in compatibility OS’s environment.

3 Overview of Developing an App with
RecoFlow

With RecoFlow, Android app developers can automatically
recover their apps from a crash by reusing user flows created
for app UI design. It requires two additional easy steps in the
app development process: (i) integrating our library into the
apps and (ii) programming existing user flows in Java with
our API and visual tool.



A typical app development process involves feature iden-
tification, design, implementation, testing, release, and main-
tenance, as shown in figure 2. Developers commonly create
user flow diagrams during UI design for possible user in-
tents. A user flow diagram is a graph of app screens where
UI elements to interact for a user intent are highlighted. The
whole graph represents the sequence of Ul actions required
when fulfilling the intent and the graph is improved over
design iterations. When the graph is finalized, the developers
implement and test it on Android devices they have. Since
testing the app on all device models and OS version combi-
nations is practically impossible, they select a few major OS
versions and the most popular device models. When the app
is released to users, the app could sometimes crash due to
incompatibility with an untested combination of a specific
OS version and device model. The crash is reported to the de-
velopers by crash reporting libraries (e.g., Crashlytics [37]);
however, releasing a fixed app usually takes a long time as
they often do not possess the problematic device model.

RecoFlow enables the developers to run their latest apps
on incompatible user devices with minimal effort while they
fix compatibility issues. While implementing the app, the de-
velopers transform the user flow diagrams to Java code with
our API. They can visually perform this task with UFGen,
our user flow code generator. UFGen takes the APK of an app
under development and mirrors the running app’s screen in
an Android emulator. To obtain the Java code for a user flow
diagram, the developers must navigate to the app screens in
the user flow and visually select highlighted UI elements on
UFGen. While doing so, UFGen automatically converts each
node, edge, and highlighted Ul elements to a Java object with
our API and generates a corresponding code segment. To
enable RecoFlow for the app, the developers must paste the
generated code in the app’s source directory and initialize
RecoFlow during the app launch.

When an app with RecoFlow runs on a user device, Re-
coFlow records all Ul inputs and matches them with the user
flow codes. If the app crashes, RecoFlow re-launches the app
in compatibility mode, which prevents recurring compatibil-
ity crashes. If a user flow was matched at the moment of the
crash, RecoFlow recovers the app state by replaying the Ul
action that matched the user flow. Figure 3 describes this
process. This way, RecoFlow enables app developers to fix
compatibility issues while their apps installed on user devices
avoid and recover from compatibility crashes. We further
discuss our API and the compatibility mode in Sections 4
and 5.

4 Visually Programming a Crash Recovery
Logic with RecoFlow API

With RecoFlow, an app developer can develop a crash recov-
ery logic for each app feature. To do so, one has to express
each user flow for the features with our APIL This allows
a developer to effectively capture what a user must do to
accomplish a goal, which can later be used to identify what
needs to be replayed to resume the work a user started before
a crash. In addition, we provide a developer tool, which we
call UFGen, that automatically generates user flow code that
uses our APL

4.1 User Flow in Stages

While a user flow is typically a graph of app screens and
UI actions making transitions between them, we define it
as a graph of Ul action sets. This enables robust user flow
matching against diverse user traces.

To understand our design for user flows, consider a sce-
nario where a user sends a message on a chatting app. There
are infinitely many possibilities for UI action sequences to
accomplish the task—a user may type a message and hit the
send button right away, or a user may start typing a few
characters but then scroll the chat history for some time and
later come back to finish the message, etc. This means we
cannot use an exact sequence of Ul actions as a user flow
since we would need infinitely many user flows to capture a
single scenario.

Thus, we define a user flow more abstractly as a directed
graph, where vertices are called stages and edges represent
stage transitions. There are two types of stages for a user flow.
The first type is the initial stages that mark the beginning
of a user flow. The second type is intermediate stages that
represent in-between Ul actions that a user can perform
after starting a user flow but before finishing it. Each stage
is represented as a set of one or more Ul actions, and a stage
transition from stage A to a connected stage B occurs if the
current stage is stage A and one of the Ul actions in stage B
occurs. If a Ul action from stage A keeps occurring, no stage
transitions occur. Otherwise, if a UI action is neither in stage
A nor in any stages connected from A occurs, the user flow
terminates.

In a stage, a Ul action is defined by a Ul element
where the Ul action occurs and a Ul action type, e.g.,
touches and typings. We use VPath, our extension of
XPath, to specify a Ul element on the screen. For ex-
ample, “//view[@class="android.widget.Button" and
@text="Click Me"1” matches with a “Click Me” button. A
VPath must always be matched with a single UI element to
select the exact UI element to play an action in replay-time.
During a Ul action replay, RecoFlow plays a Ul action on a
Ul element that matches with its VPath, and it aborts the
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Figure 4: The corresponding Ul elements of UI actions
included in the two stages in §4.2 are filled with red.

recovery if the VPath matches with 0, 2, or more Ul elements.

4.2 Example Scenario

Suppose a chat app developer wants to develop crash recov-
ery logic for a poll creation feature of her app. The feature
allows users to create a poll in a group chat room. Using Re-
coFlow API, she takes five steps to develop the crash recovery
logic.

Step 1, structuring a user intent with stages: To track a
user intent, RecoFlow API requires her to express the intent
in stages. She plans to create a user flow with two stages: the
starting-poll stage which a user clicks the “Poll” button in a
chat room, and the composing-poll stage which the user fills
in the poll title and poll options.

Step 2, visually programming each stage with UFGen:
She opens an IDE and launches her app in an Android emu-
lator. She then opens UFGen to program each stage visually.
She wants to include a single UI action of clicking the “Poll”
button to the starting poll stage because a user must do so to
create a poll. Therefore, she clicks the “Poll” button on the
app screen mirrored on the left side of UFGen (see fig. 4a).
When she clicks the “Generate Stage” button on UFGen, it
creates Java code creating a new Stage class instance with a
single UIActionFilter class instance describing the “Poll”
button click. She copies the code to the clipboard and starts
creating the composing poll stage. Creating the composing
poll state is similar to creating the starting poll stage except
that she selects all Ul elements on the poll creation pane
by dragging the mouse cursor on them (see fig. 4b). Before
generating a stage code, she unselects the “Create” button
on the poll creation pane because clicking it ends the intent;
hence, it is not part of a poll creation intent.

Step 3, defining a user flow with the stages: She creates
a custom user flow class in the IDE by extending Userflow

class in RecoFlow API. In her user flow class, she must imple-
ment an abstract method, startingStage(), which returns
the starting stage of her user flow. She pastes previously
generated Stage instance creation code in the method and
connects the two stages by calling addNextStage () method.
Finally, she makes her startingStage() method to return
the starting poll stage instance.

Step 4, preparing for a UI action replay: RecoFlow pro-
vides Userflow.prepareReplay() callback which is called
before starting the recovery. In this example, she wants to
navigate the re-launched app to the chat room because her
user flow starts by clicking the “Poll” button in the chat room.
To do so, she implements prepareReplay () callback to nav-
igate the app to the chat room before the replay begins. She
calls prependUIActionsToReplay () method in the callback
to prepend Ul actions for clicking a proper chat room before
the recorded UI actions replay.

Step 5, initializing RecoFlow: To enable crash recovery,
she calls RecoFlow’s initialize () method during her app’s
initialization and passes her user flow as a parameter.
Intent tracking and recovery on user devices: When her
app runs on a user device, RecoFlow compares every Ul action
on the app with UTActionFilter in her user flow’s starting
stage; ie., clicking the “Poll” button. When a user clicks the
button, RecoFlow records that action and transits the user
flow to the starting poll stage. When the user interacts with
any Ul elements on the poll creation pane except the “Create”
button, the user flow transits to the composing poll stage
and continues recording Ul actions as long as the subsequent
UI actions match. If a crash occurs at this moment, RecoFlow
will restart the app in compatibility mode and recover the
app by replaying recorded Ul actions. If a user escapes the
composing poll stage by clicking the “Create” button, clicking
the back button, or performing any other UI actions not
included in the stage, recorded Ul actions and the user flow’s
tracking state are cleared.

4.3 Design Features

We design RecoFlow API carefully to cover diverse use cases
and handle errors for app developers.

Recording a UI action with VPath: Existing Ul action
recording methods fall into one of these two types: recording
x-y coordinates on a screen or recording UI element and Ul
action type (e.g., click). Neither of them meets our need—
flexible enough to record diverse Ul actions (e.g., pinch and
free-form drawing on a painting app) and descriptive enough
to embed semantic information (e.g., clicking a button named
“Poll”) at the same time. Therefore, when a Ul action matches
a user flow, we record both VPath matching with a Ul element
where the action occurs and the relative x-y coordinates of
raw Ul events on the Ul element. When replaying the Ul



action, we find a Ul element matching with the VPath and
then replay a raw Ul action after converting recorded relative
coordinates into absolute screen coordinates by using the
found element’s position on the screen.

Error handling: To place UI action replay always under
a developer’s control, we replay a Ul action whose VPath
matches with only one UI element on the screen. We abort
the replay after timeout (2 seconds by default) if the VPath
matches with no Ul element, and we abort the replay immedi-
ately if it matches with more than one Ul element. According
to our developer study (§6.2) and user study (§6.1), we could
not find any cases that RecoFlow replays Ul actions out of
target user intents (e.g., due to a developer’s mistake).

5 RecoFlow Compatibility Mode

We provide brief background about Android OS (§5.1), ex-
plain RecoFlow’s compatibility mode (§5.2), and the required
AOSP’s support for enabling RecoFlow on billions of existing
Android devices (§5.3).

5.1 Android OS Background

RecoFlow virtualizes only a part of the Android OS (the app
framework) for its compatibility mode. The virtualized app
framework resides in an additional Zygote, a special system
process we inject for compatibility mode. We provide the
background for understanding what the app framework is
and why and how RecoFlow virtualizes the app framework.
The Android app framework: The app framework is a set
of Java and C++ libraries that provide essential run-time ser-
vices either directly by itself or indirectly by communicating
with other system services. For example, the app framework
provides the Android OS API and the Dalvik Java virtual
machine. The app framework is always linked to an Android
app; without it, an app cannot function properly. RecoFlow
virtualizes this app framework to provide an execution envi-
ronment that behaves as a compatibility OS.

System services and their RPC interface (SSI): When
an app accesses a system resource (e.g., a display), it makes
a request to the app framework via the Android OS API.
The app framework then communicates with an appropriate
system service to handle the request. Android has various
system services, such as the Window Manager that decides
which app to show on the display and the Activity Manager
that decides when to start, pause, and stop an app. These
system services exist as user-space processes and define
an RPC interface that the app framework uses to access
their functionality. We call this RPC interface between the
app framework and the system services the System Service
Interface (SSI). Different Android OS versions might have
different SSI definitions due to OS version updates or vendor
customization.

Booting the Android OS and launching an app with
Zygote: The Android OS is based on Linux and its booting
process is similar to that of Linux. It uses init.rc as its
boot script that performs various initialization tasks such as
setting up necessary environment variables, mounting disk
partitions, etc. A notable difference between Android and
Linux is the use of a special process called Zygote, a system
daemon that is the parent of every Android app process. It is
the process that handles app launches—it receives a request
to start an app and forks a new process that loads and ex-
ecutes the app. Since Zygote is linked to the app framework
and every app process is a fork of Zygote, all app processes
are automatically linked to the app framework. We create an
additional Zygote for RecoFlow to boot a compatibility OS.

5.2 RecoFlow’s Compatibility Mode

The goal of RecoFlow’s compatibility mode is eliminating
Android OS API mismatches between an app and an Android
OS by placing a compatibility OS layer. This goal translates
into four technical objectives (O1-O4). First, the compatibility
mode should execute an app in a compatibility OS’s app
execution environment (O1). Second, an app’s local data files
(e.g., a social-media app’s log-in tokens and a photo app’s
photos) should persist over the compatibility mode (02).
Third, the compatibility mode should be transparent to the
host OS and other apps as if a compatibility mode app is a
regular app (O3). For example, a regular Android OS on a user
device should start, pause, and stop a compatibility mode
app as it does for regular Android apps. Another example is
that a compatibility mode chat app should launch a regular
PDF viewer app just as a regular chat app would when a user
clicks a PDF file link. Fourth, the compatibility mode should
be lightweight to run on mobile devices (O4).

Enabling our compatibility mode essentially creates a com-
patibility OS’s app execution environment that meets the
above four objectives on a user device. Figure 5 describes
our compatibility mode app execution.

For O1, RecoFlow virtualizes a compatibility OS’s com-
ponents for the app execution environment, specifically, the
app framework, Zygote, and the init script. When enabled
on a user device, RecoFlow adds an additional Zygote that
has a compatible OS’s app framework. RecoFlow modifies
the init script to launch the additional Zygote on a device
boot. If an app crash is recorded on Android logcat, RecoFlow
hijacks later launch requests for the app and redirects them
to the additional Zygote. By doing so, the app is launched in
the compatible OS’s app execution environment. For O2, the
host OS’s app-specific data directories are shared with the
compatibility OS. For O3, RecoFlow executes a compatibility
mode app with the host OS’s system services. Therefore, the
host OS can start and stop the app and relay communication
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Table 1: RecoFlow and other virtualization techniques’
technical feasibility for the compatibility mode.
[01[02]03]04]

‘ Virtualization Techniques

RecoFlow’s micro-virtualization | v/ | v | vV | V/
Hardware Emulation v
Full Virtualization v
Containerization v v

between the app and other regular apps as it does for
regular Android apps. Executing the compatibility OS’s app
framework and the host OS’s system services together needs
caution as they may have inconsistent definitions of the
SSI (System Service Interface) for making RPC calls to each
other. Therefore, RecoFlow translates every inconsistent RPC
call between them. Regarding O4, RecoFlow is lightweight as
it does not add additional program components to execute
except SSI translation. In our experiments, SSI translation
adds only marginal run-time overhead (see §6.5).

To our knowledge, RecoFlow’s micro-virtualization is
the only virtualization technique achieving the four objec-
tives when used for a compatibility mode. Emulation (e.g.,
QEMU [38]), full virtualization (e.g., KVM [39]), and con-
tainerization (e.g., chroot [40]) have been demonstrated on
Android OS. However, neither their guest OS apps share data
files with host OS apps, nor their guest OS apps integrate
into the host OS environment. Hence, they fail to achieve
02 and O3, respectively. Furthermore, emulation and full
virtualization incur significant overhead on mobile devices.
Therefore, they do not achieve O4. Table 1 summarizes the
comparison.

5.3 How to Enable RecoFlow

To enable the RecoFlow’s compatibility mode, we provide a
compatibility OS packaging tool, compatibility mode patch
tool, and SSI translation tool to AOSP to generate compat-
ibility OSes, patched Host OSes, and SSI translation packs,
respectively. Using the tools, AOSP performs three tasks.
Compatibility OS image creation: AOSP should make the
selected compatibility OSes’ images publicly available. One
of those images must be downloaded to a device to enable our
compatibility mode.The tasks might involve a small amount
of manual effort to modify the boot script around 300 LoC.
System Service Interface translation: A compatibility OS
uses the host OS’s system services. This allows the compati-
bility OS to be lightweight but requires SSI translation when
there are any changes in SSI due to the version difference
between the compatibility OS and the host OS. Thus, when
AOSP releases a new Android OS revision, it should create
an SSI translation pack for SSI changes between the new and
the previous revisions. While it is mandatory, SSI translation
is mostly mechanical and automatable. For instance, we have
translated 61 out of 5,824 SSI calls for running Android 9.0
compatibility OS on Android 8.1 host OS, and only two of
them require manually writing 359 lines of translation code.

Note that a device vendor’s OS customization might
change SSI. However, their SSI changes rarely affect Re-
coFlow’s compatibility mode as a vendor’s customization
mainly involves adding new services to support device-
specific features, e.g., foldable screen. Since a compatibility
OS is based on AOSP that does not target any specific de-
vice, there is no need for a compatibility OS to handle those
SSI changes. Our analysis of 12 commercial Android device
ROMs from five vendors (Samsung, Google, Xiaomi, Sony,
and Oppo) across three Android OS versions (8, 9, and 10)
reveals that the vendors added 1,080 SSI calls for a ROM
on average while modifying 5.25 and deleting 0.16 calls. We
could automatically translate SSIs for all ROMs except two
Samsung Galaxy S8 ROMs having a deleted SSI call.
Patching user device OS: To launch an app in our compat-
ibility mode, RecoFlow needs small changes to the existing
Android OS to boot a compatibility OS and launch an app as
necessary. To facilitate applying this change, we developed
a compatibility mode patch tool. AOSP could use this tool to
patch existing user devices as an over-the-air (OTA) update.
It only requires rebooting a device once and does not require
installing a new OS.

5.4 Motivations for AOSP on Using
RecoFlow

We expect AOSP to have the motivation to perform their
tasks. AOSP has put significant efforts into alleviating the



Table 2: User flows and user tasks for §6.1 and §6.2.

‘ App ‘ Target Intent ‘ User Task ‘
. Search for fever remedy’s effects, side-
Firefox ]randalrtk a book- effects, and history and bookmark them
in new folders accordingly.

Log-in Log in to the app with a given e-mail

K-9 Mail | Search for an | address and password. Search for emails
email related to “rice cake” and classify them
Classify an | into “urgent”, “rice cake”, and “reference”
email folders.

Search for a | Search for “study group” chat room and say
chat room hello in there.

Creating a poll in the “my friends” chat
room for surveying dinner attendees.

Telegram Create a poll

Create a group
chat
Update profile

Create a new group named “my group”.

Update bio to “nice to meet you”.

compatibility crash problem. Despite their efforts, app de-
velopers still must fix the compatibility issues that persist
in numerous OS versions. RecoFlow automatically detects
a compatibility crash and transparently executes the pre-
pared compatibility OS. The cost for the compatibility mode
is small (2.7% slowdown of apps’ execution time) with only
38.7 MB extra memory. In addition, the RecoFlow’s toolset au-
tomates most of what the AOSP should provide. AOSP could
easily apply our patch to legacy devices via an over-the-air
update.

6 Evaluation

We implemented RecoFlow with 24,515 lines of Python/-
Java/C/C++ code. We evaluate RecoFlow API’s (i) robustness
to diverse app users with a user study, (ii) ease-of-use with a
developer study, and (iii) ease-of-maintenance with user flow
maintenance study. We also evaluate RecoFlow’s (iv) compat-
ibility mode’s effectiveness with a compatibility crash case
study and (v) performance with a microbenchmark.

6.1 User Study

To evaluate whether we can develop robust recovery logic
with RecoFlow API, we created nine different user flows for
three popular open-source apps, Firefox browser (100M+
downloads), K-9 mail (5M+ downloads), and Telegram mes-
senger (1B+ downloads). Table 2 lists our user flows, their
target user intents, and graphs of stages we implement for
them. To evaluate our user flows with diverse user traces,
we recruited eight participants (2 females and 6 males, aged
20~27) who have used Android smartphones for at least a
month. We prepared three Android smartphones, Samsung
Galaxy S20, Samsung Galaxy S22 Ultra, and Google Pixel
2 XL, and installed the three apps on each phone. Before
starting the user study, we gave them one of the phones and
asked them to explore the three apps for 10 minutes to help
them be familiar with the apps. They were compensated with

$8 for 30~40 minutes of a user study session. Our study is
IRB-approved.

6.1.1  Online Crash Study. For evaluating the four user flows
in Firefox and K-9 Mail, we asked the participants to perform
a task for each app (see Table 2 for task details). To collect
diverse user traces, we did not provide instructions to users
about which UI elements they should use for accomplishing
given tasks or the specific sequence in which to use them.
While they used the apps for the tasks, we randomly crashed
the apps when they performed between 5 to 60 Ul actions
to simulate compatibility crashes. The app is automatically
recovered after a crash if a participant’s UI actions match
with our user flow. If not, we instructed the participant to
open the app and continue the task. During the experiments,
we recorded the smartphone screen while visualizing touch
inputs for later analysis.

We manually labeled all crash cases in the screen record-
ings. Firefox and K-9 apps crashed 74 times between all par-
ticipants during the experiments. Among 41 Firefox crashes,
10 occurred while adding a bookmark. Among 33 K-9 Mail
crashes, four occurred while a participant logged in, six while
searching for an email, and one while classifying an email.
For all aforementioned cases except three, RecoFlow correctly
recovered the app to the state before the crash. For the three
cases, the recovery did not start as we accidentally omitted
Ul actions creating new folders from the ‘filling in bookmark
info. stage in the Firefox app’s user flow. We note that this
mistake affected only recovery initiation, and it is less likely
to happen in practical use cases where app developers have
user flows used for the app’s UI design. We found partici-
pants taking uninstructed actions (e.g., writing an email and
opening a settings window) and repeating similar actions
(e.g., adding bookmarks multiple times). However, those unin-
structed actions and previously completed user intents were
never replayed; this suggests that our API effectively replays
only the necessary Ul actions as intended.

6.1.2  Offline Crash Study. For evaluating the four user flows
in Telegram, we asked the participants to perform four tasks
matching with each user flow. This time, we did not ran-
domly crash the app but instead recorded every Ul action a
participant performed for each task in a replayable format.
After collecting the UI actions, we replayed each trace
on a recovery-enabled Telegram app and simulated a crash
during a replay. For a thorough evaluation, we picked one of
the participants and one of the task traces of the participant.
We repeated it multiple times while moving the crash simu-
lation moment from the beginning of a trace to the end of
the trace by a 1-second interval. During this experiment, we
captured an app screenshot before injecting a crash and cap-
tured another screenshot when the recovery was completed.
We then manually compared every pair of screenshots and



classified them in a confusion matrix. We did this for every
participant’s task. We found 647 true positive recovery cases,
408 true negative recovery cases (i.e., not recovered because a
participant was not in any of target intents, browsing a chat
room list, for example), and no false positive or false negative
recovery cases. This suggests that we could develop robust
crash recovery user flows with RecoFlow API for Telegram.

6.2 Developer Study

To evaluate how easy RecoFlow API is to use, we recruited
six professional app developers (one female and five males,
aged 22~33). As freelancer Android app developers, P1, P2,
and P3 have worked on one, three, and one Android app
development projects. P3, P4, P5, and P6 have worked as
full-time Android app developers for six months, 14 months,
one year, and four years, respectively. At the beginning of an
experiment session, we explained the purpose of the experi-
ment and RecoFlow API for 50 minutes. We then asked them
to develop a user flow for each recovery target intent we
defined for Telegram (Table 2). Since we could not obtain the
original user flow diagrams that Telegram app developers
created, we asked the participants to develop user flows with
their own understanding of the intents. We did not force the
order of the tasks, but we recommended first working on
a chat room search intent, the easiest one, then moving to
poll creation, group chat creation, and profile update tasks.
For the experiment, we loaded the Telegram app on Android
Studio and modified its build script to load RecoFlow APL
We also wrote a piece of code (5 LoC) for calling RecoFlow’s
initialization function that must be called at the app launch
because navigating a large Telegram source code (3.7M LoC)
to find the proper place for calling it may be difficult for the
developers. Lastly, we provided a user flow for recovering
crashes while a user shares her geolocation as a live exam-
ple of our API in a chat room. They spent 2.5~3 hours for
user flow development, followed by 10 minutes interview.
They were compensated with $75 for the four hours of devel-
oper study. Our study is IRB-approved. All developers except
P1 attended the same experiment session but they did not
discuss with one another during the experiment.

All developers except P6 could develop user flows for chat
room search intent and poll creation intent. While others did
not, P6 had difficulty understanding how RecoFlow works.
P1 also developed a user flow for the profile update intent,
and P2 wrote user flow code for the group chat creation
intent and the profile update intent; however, P2 did not
have enough time to test those two intents by himself.

We evaluated the P1 - P5’s user flows with four synthetic
Ul action traces that perform each Telegram user task in
table 2. We recorded the synthetic Ul action traces while
making only the Ul actions essential for performing the

P1
P1

P2

P4 P3
P4 P3 P2

Ours P5
Ours P5

0.0
Search  Poll Group Profile Search  Poll Group Profile
Tasks Tasks

(a) Recovery precision. (b) Recovery recall.
Figure 6: Offline crash study with synthetic UI action
traces for the user flows obtained from the developer
study and ours.
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(a) Recovery precision. (b) Recovery recall.
Figure 7: Offline crash study with real UI action traces
for the user flows obtained from the developer study
and ours.

task. With the traces, we performed an offline crash study
(§6.1.2) for the developers’ user flows. Figure 6 summarizes
the results. For all developers and all user tasks, recovery
precisions were 1, meaning there are no falsely triggered
recoveries nor incompletely finished recoveries. For the chat
room search task and the profile update task, the recovery
recalls were 1, too; this means that the developers’ user flows
effectively recover all crash cases that occurred while a user
was in the target intent. Some developers’ user flows’ recalls
were lower than 1 for other tasks. This is mainly because the
user flows do not thoroughly include all UI actions that may
happen while accomplishing the given task. For example,
P3’s poll creation user flow stops tracking when users type
in a poll option after creating one because the newly created
poll option field is not included in the user flow.

We further evaluated P1 - P5’s user flows with the Ul
action traces from user study participants. Although devel-
opers did not have enough time to get familiar with the
Telegram app and RecoFlow API, their user flows success-
fully recovered all crashes during the chat room search task.
One difference from the previous evaluation using synthetic



UI action traces is that the precisions of P2’s poll creation
user flow and group creation user flow are lower than 1. P2’s
UI action record of filling in a poll option matches multiple
poll option UI elements when replayed because P2’s VPath
was not descriptive enough to distinguish them. As a result,
P2’s crash recovery stops when a user creates multiple poll
options and fills them in. P2’s group creation user flow ex-
perienced a similar issue. We note that even for P2’s user
flows, Ul actions unrelated to a disrupted user intent were
never played during the recovery. Another difference from
the previous evaluation using synthetic UI action traces is
that the recall values for the poll creation, group creation,
and profile update tasks became lower. This is because users
performed more diverse Ul actions that were not included
in their user flows but were still relevant to the tasks, for
example, dragging an empty part of the poll creation pane
to scroll the pane.

In the semi-structured interviews after user flow devel-
opments, we asked about the usability of RecoFlow API and
specific difficulties they experienced. P2 said that the API
is comfortable once he gets used to it, and P3 and P5 noted
that the API is easy and intuitive to use. P4 and P6 said the
API was complicated and required more explanations. When
we asked about specific difficulties they experienced, they
responded that (1) selecting the exact view with UFGen is
challenging when multiple views are overlapped on the z-
axis (P2, P3, P5), (2) UFGen generates invalid VPath using
ephemeral text for an editable text field (P1), (3) they were
unfamiliar with the Telegram app (P1), (4) non-English text
input was ignored (P3), and (5) they could not understand the
UFGen-generated code (P6). We addressed (1) by selecting
only the views at the top when a user visually selects views
on UFGen, (2) by ignoring text values when a view is Edit-
Text class, (4) by ensuring Unicode compatibility, and (5) by
updating our API document. We believe (3) is not a problem
in practical scenarios where app developers use RecoFlow on
their own apps.

In the interviews, P3 and P5 expressed interest in using
RecoFlow APL P3 said, “I think this API is useful for quality
assurance (QA). ... My boss would like to use this for QA, for
users.” P5 said, “This will definitely help. Even if its coverage
is limited, I would adopt this if such a thing exists. ... From
the users’ perspective, they care only about UI/UX. So I am
okay as it improves UX”

6.3 User Flow Maintenability

A user flow’s robustness against app updates is crucial for
minimizing app developers’ crash recovery logic mainte-
nance burden. To evaluate that, we have tested the correct
execution of our user flows for the user study (§6.1) with
older versions of Telegram, Firefox, and K-9 Mail. For Firefox
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and K-9 Mail, the oldest versions we could compile and test
were 489 days and 367 days ago, respectively. We could not
test versions older than 59 days ago for Telegram because the
Telegram server refused to serve those old clients. In those
periods, apps were actively updated; there were 16 Telegram
releases, 131 Firefox releases, and 32 K-9 Mail releases. We
manually tested our user flows by stimulating crashes with
the oldest and a few more versions. For all test versions of
the three apps, our user flows successfully track user intents
and recover from crashes. This suggests that app developers
do not have to update user flows as frequently to keep up
with app updates.

6.4 RecoFlow’s Compatibility Mode Case
Study

We use three workload types to comprehensively evaluate
whether RecoFlow can recover from compatibility crashes.
First, we use the French Calendar, a Google Play app reported
having compatibility issues by previous studies [9, 12, 13].
Second, we use a prevalent Android library that we verified
to have compatibility issues, the AndroidX library. We chose
this library because (i) it is used by 84% of Android apps [44]
and (ii) its release notes are comprehensive for reproducing
compatibility issues. Lastly, we design a synthetic benchmark
that consists of five apps that target specific compatibility
issues. To design this synthetic benchmark, we manually
examined potential API mismatches between Android 4.0
and 4.1, as well as between Android 8.1 and Android 8.0
customized for an embedded board that we use for our eval-
uation, i.MX 6. We then grouped the found mismatches into
five types: missing packages, missing classes, inconsistent
method parameters, inconsistent class inheritance, and miss-
ing methods, and developed an app exhibiting a compatibility
issue for each type.

Table 3 summarizes our workload as well as results, which
we discuss in detail below.
Workload 1 (French Calendar): French Calendar is a calen-
dar app downloaded over 10,000 times from the Google Play
Store. When making a calendar event notification, it calls
the setLocalOnly() method to avoid propagating the noti-
fication to a paired smartwatch if it exists. setLocalOnly()
was introduced in Android KitKat (KK) (Android 4.4). French
Calendar checks a user device’s OS version not to call the
method in OS versions below KK. However, its developer
made the mistake of calling it when the OS version is lower
than Android Jelly Bean (JB) (Android 4.1). French Calendar
crashes with NoSuchMethodError when it tries to make a
calendar notification on Android Ice Cream Sandwich (ICS).
This problem lasted three months, from November 2016 to
February 2017, until the app developers finally fixed it. We
have run RecoFlow with JB as the compatibility OS on ICS



Table 3: Execution results of apps and libraries on incompatible OSes (I), compatible OSes (C), and compatibility
mode of C on host OS I (RecoFlow).

App/Library Description Execution Results
Environment
2| French Calendar Calling setLocalOnly() to control notifications’ target devices. The method should not ICS (4.0) for emul. (I) Error
2 be called in ICS OS as ICS does not have the method, otherwise, NoSuchMethodError JB (4.1) for emul. (C) Ok
= App [41]
| would occur. RecoFlow Ok
& androidx biometric AndroidX library’s BiometricManager . canAuthenticate (BIOMETRIC_STRONG) should Q (10.0) for emul. (I) Error
i Lib ) 1 return BIOMETRIC_SUCCESS when fingerprint authentication is available; however, it Oreo (8.1) for emul. (C) Ok
£ ibrary [42] | 1eurns BIOMETRIC_STATUS_UNKNOWN on Android 10 OS. RecoFlow Ok
g androidx. fragment A callback registered by ViewCompat.setOnApplyWindowInsetsListener() must be Q (10.0) for emul. (I) Error
g Librar. [43] called once when app window is moved or resized; however, the callback is called Oreo (8.1) for emul. (C) Ok
o y indefinitely many times on Android 10 OS. RecoFlow Ok
Importing InputManager from input package for using an external keyboard. ICS (4.0) for emul. (I) Error
Synthetic App 1 | InputManager class is moved from inputmanager package to input package with JB OS JB (4.1) for emul. (C) Ok
release; therefore, the app crashes with NoClassDefFoundError on ICS OS. RecoFlow Ok
= . . - . s R ICS (4.0) for emul. (I) Error
g Synthetic App 2 U51.ng android. app.Act1v1tyOpt10r.1$ class to set a custom screen transition animation. 7B (4.1) for emul. (C) Ok
< This causes NoClassDefFoundError in ICS OS because ICS OS does not have the class. RecoFT Ok
g ecoFlow
& Calling showChild(ViewGroup parent, View child, int oldVisibility) to makea | ICS (4.0) for emul. (I) Error
8| Synthetic App 3 | Ul element visible. On ICS OS the app crashes with NoSuchMethodError since the method | JB (4.1) for emul. (C) Ok
i has a different call signature: showChild(ViewGroup parent, View child). RecoFlow Ok
2 Casting an android.view.KeyCharacterMap object into Parcelable Java interface to ICS (4.0) for emul. (I) Error
J‘E Synthetic App 4 | serialize it. This causes IncompatibleClassChangeError on ICS OS as ICS OS’s JB (4.1) for emul. (C) Ok
& KeyCharacterMap does not implement Parcelable while JB OS’s does. RecoFlow Ok
Calling setPlaySpeed() for media speed control when the app is on an i.MX 6 device. Oreo (8.0) for iMX 6 (I) Error
Synthetic App 5 | This causes NoSuchMethodError on Oreo (8.0) OS because the method is removed from Oreo (8.1) for emul. (C) Ok
KitKat (4.4) OS release without a notice. RecoFlow Ok

and verified that we can successfully avoid the crash.
Workload 2 (AndroidX): With the AndroidX library,
we reproduced two compatibility issues. First, AndroidX’s
BiometricManager class provides canAuthenticate(...)
method to test whether a specific authentication method is
available on a device. When BIOMETRIC_STRONG is passed as
a parameter, the method returns BIOMETRIC_SUCCESS when
fingerprint authentication is available; however, it returned
BIOMETRIC_STATUS_UNKNOWN on Android 10 as it sets the
mFingerprintManager field of the BiometricManager class
as null on Android 10 by mistake.

Second, AndroidX’s ViewCompat class provides setOn-
ApplyWindowInsetsListener() method for registering a
callback to be called once when the app window is moved or
resized. However, AndroidX had called the callback infinite
times due to a compatibility bug when an app on Android 10
creates FragmentContainerView instance after calling the
WindowCompat.setDecorFitsSystemWindows () method.

For both cases, we ran RecoFlow with Android 10 as the
compatibility OS on Android 8.1 and verified that we suc-
cessfully avoided the crashes.

Workload 3 (Synthetic Benchmark): We develop five apps
that exhibit different compatibility issues with ICS. App-1
uses a package that does not exist on ICS, app-2 uses a class
that does not exist on ICS, app-3 calls a method with an
incompatible signature, and app-4 casts a class to an incom-
patible subclass. These four apps crash on ICS but not on JB.
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We have run RecoFlow with JB compatibility OS on ICS and
verified that we can successfully avoid the crashes.

In addition, we developed another app (app-5) that has
compatibility issues with 1. MX 6’s vendor-specific customiza-
tion. This customization adds the setPlaySpeed(int)
method to the MediaPlayer Java class in Android OS APL
However, this method is removed in later OS releases for
1.MX 6. Thus, it will crash if an app mistakenly uses set-
PalySpeed(int) without properly handling OS versions.
We have implemented this in app-5 and verified that Re-
coFlow can successfully avoid the crash.

6.5 Microbenchmark

We evaluate RecoFlow’s overhead with the French Calendar
app. We modified the app’s source code to use RecoFlow
API to recover the app’s state when a crash occurs. As the
app crashes when changing a notification setting, our user
flow for the experiment has an initial stage of clicking the
“settings” button and another stage of interacting with any
Ul elements in the settings window.

We use an Android emulator running ICS for experiments.
In the emulator, JB compatibility OS image and correspond-
ing translation packs were downloaded for use. The emulator
emulates a single CPU core and 501 MB RAM. The emulator
is on a server with a 3.10 GHz Intel Xeon CPU.

Our experiment launched the French Calendar app on
an Android emulator running ICS OS. We then click the
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Figure 8: Latency breakdown for recovering the French Calendar (FC) app’s crash in compatibility mode.

“settings” to navigate to the app’s settings panel and click the
“system notification” option to change notification settings.
When we click “system notification”, the app crashes as it
invokes setLocalOnly () Android API method that does not
exist in ICS. RecoFlow detects the app’s crash and launches
the app in compatibility mode. JB compatibility OS is booted
first, and the app is then launched with the compatibility OS.
As soon as the app is launched, RecoFlow replays clicking the
“settings” and “system notification” to restore the app’s state.
The app invokes setLocalOnly() again and successfully
makes a notification as it is in compatibility mode.
Latency overhead: RecoFlow takes 5.55 seconds from when
the French Calendar app crashes to when the app’s state
is recovered in compatibility mode. We analyze the source
of RecoFlow’s crash handling delay in three phases; com-
patibility OS booting (fig. 8a), app launch (fig. 8b), and app
recovery (fig. 8c) that respectively takes 2,242 ms, 223 ms,
and 3,085 ms. In the compatibility OS booting phase, init
process takes 658 ms before starting compatibility OS’s Zy-
gote. Once Zygote is started, loading C/C++ app framework
libraries and initializing Java virtual machine (JVM) take
442 ms. Loading Java app framework libraries takes 1,142 ms.
In the app launch phase, the French Calendar app’s custom
initialization logic takes 98 ms. While the app framework
and system services launch the app, they consume 91 ms
and 23 ms, respectively. RecoFlow’s SSI translation takes only
12 ms, which is approximately 5% of the entire app launch
phase delay. In the app recovery phase, RecoFlow parses Ul
elements to replay recorded Ul actions. Although this takes
1,083 ms, recovery is automatic, and the total recovery time
is still short compared with a scenario that the end-user man-
ually repeats the same Ul actions to change the notification
setting. System services and SSI translation take 649 ms and
78 ms, respectively. The rest of the delay, 1,273 ms, is for the
app framework and the app’s logic. During app launch and
recovery, RecoFlow’s micro-virtualization adds only 89.4 ms
of SSI translation delay (2.7%).

Memory & storage overhead: We measure physical mem-
ory usage of the host OS’s Zygote, compatibility OS’s Zygote,
the French Calendar app, and any other processes. Figure 9
shows the results. Before we launch the French calendar app
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Figure 9: Memory consumption breakdown.

on the host OS, the host OS’s Zygote is consuming 36.6 MB.
When the app is launched, although the app uses the whole
app framework that Zygote loads and initializes, the app
occupies only 7.0 MB more memory. This is because the app
shares memory allocated for the app framework with Zygote
from when it forked from Zygote. When the app crashes and
relaunches in compatibility mode, 38.7 MB additional mem-
ory is used by compatibility OS’s Zygote. The compatibility
mode app launches from compatibility OS’s Zygote takes
9.4 MB. To summarize, RecoFlow uses only 38.7 MB for com-
patibility OS’s Zygote, which we believe is affordable for the
emulator with 501 MB RAM.

As a compatibility OS image must be downloaded and
stored in a device, the image adds networking and storage
overhead. The JB compatibility OS image used for our evalu-
ation is 273 MB and compresses to a 119 MB zip file.

7 Discussion

RecoFlow on commercial devices: RecoFlow is deployable
on commercial devices. We successfully patched vendor-
customized OSes for our compatibility mode: Android ICS OS
on Galaxy Nexus, Android JB OS on Galaxy Nexus, Android
Lollipop OS on Galaxy S5, Android Marshmallow OS on
Galaxy S5, and Android Oreo OS on Nexus 5X. We booted
JB compatibility OS on ICS OS Galaxy Nexus and JB OS
Galaxy Nexus. However, we could not evaluate RecoFlow
on these devices as they have different layouts of partitions
and file systems depending on device types (A/B device or
non-A/B device) and Android OS versions [45]. Hence, their
source code is required for debugging RecoFlow to be fully



functional. Instead, we have evaluated RecoFlow on i.MX 6,
an Android development board, that the vendor provides the
source code of their customized Android OS.

Security: One might be concerned that a malicious app could
abuse RecoFlow’s compatibility mode to bypass any security
enforcement mechanisms implemented in the host OS. Re-
coFlow, however, replaces only the app framework that is an
app-side OS component executed as part of the app’s pro-
cess with the app’s Unix permissions. Therefore, any attack
scenarios abusing the compatibility OS’s app framework is
likely already possible by the app itself, and RecoFlow does
not add new security concerns.

8 Conclusion

We presented RecoFlow which provides a second chance to ex-
ecute a crashed app and avoid compatibility crashes in future
executions. RecoFlow enables Android app developers to au-
tomatically recover a crashed app by selectively replaying UI
actions of a user intent disrupted by the crash. To do so, app
developers use RecoFlow’s easy-to-use API and UFGen that
enables the visual programming of the user flows. Further-
more, RecoFlow prevents subsequent compatibility crashes
by enabling compatibility mode app execution for Android
apps. In compatibility mode, Android apps are executed with
a compatibility OS and avoid compatibility issues with the
host OS on a device. RecoFlow achieves this with its Android
OS virtualization technique that effectively executes an app
in a virtualized OS yet incurs only bare-minimal overhead.
Our evaluation with Android app developers and Android
app users demonstrates that RecoFlow can effectively recover
compatibility crashes under various scenarios.
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